화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.28, 37-44, August, 2015
Carbonization of Elaeis guineensis frond fiber: Effect of heating rate and nitrogen gas flow rate for adsorbent properties enhancement
E-mail:
Heating rate and nitrogen gas flow rate were found to be influencing carbonization process. Lowering the heating rate from 30 to 10 8C/min has resulted in the increase of Brunauer.Emmett.Teller (BET) surface area of the adsorbent from 398.23 to 555.53 m2/g; the percentage of color removal and COD reduction of Rhodamine B dye have also increased from 27.59 to 99.11% and 25.77 to 98.62%, respectively. The adsorbent prepared under 100 cm3/min nitrogen flow rate exhibits higher efficiency than that at 500 cm3/min. The carbonization process has efficiently increased the BET surface area of the raw adsorbent by 99.35%.
  1. Salman JM, Njoku VO, Hameed BH, Chem. Eng. J., 174(1), 33 (2011)
  2. Salman JM, Arabian J. Chem., 7, 101 (2014)
  3. Low LW, Teng TT, Alkarkhi AFM, Morad N, Azahari B, Sep. Sci. Technol., 49(7), 1104 (2014)
  4. Li W, Yang K, Peng J, Zhang L, Guo S, Xia H, Ind. Crop. Prod., 28, 190 (2008)
  5. Lewis IC, Carbon, 20, 519 (1982)
  6. Daud WMAW, Ali WSW, Sulaiman MZ, J. Chem. Technol. Biotechnol., 76(12), 1281 (2001)
  7. Kim JW, Shin CH, Park JH, Jin WZ, Bae KH, Jung MJ, J. Ind. Eng. Chem., 18(5), 1828 (2012)
  8. Solano AL, Gonzalez JDL, Sabio MM, Rodriguez-Reinoso F, J. Chem. Technol. Biotechnol., 30, 65 (1980)
  9. Mackay DM, Roberts PV, Carbon, 20, 105 (1982)
  10. Marcilla A, Asensio M, Martin-Gullon I, Carbon, 34, 449 (1996)
  11. Salleh WNW, Ismail AF, Sep. Purif. Technol., 88, 174 (2012)
  12. Ozcimen D, Ersoy-Mericboyu A, Fuel Process. Technol., 89(11), 1041 (2008)
  13. Kuo HH, Lin JHC, Ju CP, Carbon, 43, 229 (2005)
  14. Heibati B, Rodriguez-Couto S, Amrane A, Rafatullah M, Hawari A, Al-Ghouti MA, J. Ind. Eng. Chem., 20(5), 2939 (2014)
  15. Liu ZJ, Jiang ZH, Cai ZY, Fei BH, Yu Y, Liu XG, Renew. Energy, 51, 1 (2013)
  16. Montgomery DC, Design and Analysis of Experiments, fifth ed., John Wiley & Sons, New York, NY, 2001.
  17. Low LW, Teng TT, Alkarkhi AFM, Ahmad A, Norhashimah M, Water Air Soil Pollut., 214, 185 (2011)
  18. Sivarajasekar N, Baskar R, J. Ind. Eng. Chem., 20(5), 2699 (2014)
  19. Pirouzfar V, Moghaddam AZ, Omidkhah MR, Hosseini SS, J. Ind. Eng. Chem., 20(3), 1061 (2014)
  20. Low LW, Teng TT, Ahmad A, Morad N, Wong YS, Water Air Soil Pollut., 218, 293 (2011)
  21. Muthuraman G, Teng TT, J. Ind. Eng. Chem., 15(6), 841 (2009)
  22. Elumalai S, Muthuraman G, Sathya M, Soniya M, Teng TT, J. Ind. Eng. Chem., 20(4), 1958 (2014)
  23. Gregg SJ, Sing KS, Adsorption, Surface Area and Porosity, Academic Press, New York, NY, 1982.
  24. Amir T, Teng TT, Abbas FMA, Norli I, Low LW, Desalin. Water Treat., 47, 334 (2012)
  25. Amini M, Younesi H, Bahramifar N, Lorestani AAZ, Ghorbani F, Daneshi A, Sharifzadeh M, J. Hazard. Mater., 154(1-3), 694 (2008)
  26. Kalavathy MH, Regupathi I, Pillai MG, Miranda LR, Colloids Surf. B: Biointerfaces, 70, 35 (2009)
  27. Liu Y, Wang JT, Zheng Y, Wang AQ, Chem. Eng. J., 184, 248 (2012)
  28. Brunauer S, Deming LS, Teller E, J. Am. Chem. Soc., 62, 1723 (1940)
  29. Seebauer V, Petek J, Staudinger G, Fuel, 76(13), 1277 (1997)
  30. Katyal S, Thambimuthu K, Valix M, Renew. Energy, 28(5), 713 (2003)
  31. Demiral I, Ayan EA, Bioresour. Technol., 102(4), 3946 (2011)
  32. Manabe T, Ohata M, Yoshizawa S, Najajima D, Goto S, Uchida K, Yajima H, Compos. Sci. Technol., 67, 381 (2006)