Korean Chemical Engineering Research, Vol.53, No.6, 695-702, December, 2015
Recovery of Acetic Acid from An Ethanol Fermentation Broth by Liquid-Liquid Extraction (LLE) Using Various Solvents
E-mail:
Liquid-liquid extraction (LLE) using various solvents was studied for recovery of acetic acid from a synthetic ethanol fermentation broth. The microbial fermentation of sugars presented in hydrolyzate gives rise to acetic acid as a byproduct. In order to obtain pure ethanol for use as a biofuel, fermentation broth should be subjected to acetic acid removal step and the recovered acetic acid can be put to industrial use. Herein, batch LLE experiments were carried out at 25°C using a synthetic fermentation broth comprising 20.0 g l-1 acetic acid and 5.0 g l-1 ethanol. Ethyl acetate (EtOAc), tri-n-octylphosphine oxide (TOPO), tri-n-octylamine (TOA), and tri-n-alkylphosphine oxide (TAPO) were utilized as solvents, and the extraction potential of each solvent was evaluated by varying the organic phase-to-aqueous phase ratios as 0.2, 0.5, 1.0, 2.0, and 4.0. The highest acetic acid extraction yield was achieved with TAPO; however, the lowest ethanol-to-acetic acid extraction ratio was obtained using TOPO. In a single-stage batch extraction, 97.0 % and 92.4 % of acetic acid could be extracted using TAPO and TOPO when the ratio of organic-to-aqueous phases is 4:1 respectively. A higher solvent-to-feed ratio resulted in an increase in the ethanol-to-acetic acid ratio, which decreased both acetic acid purity and acetic acid extraction yield.
- van Heiningen A, Pulp Paper Canada, 107(6), 38 (2006)
- Cogan TM, Appl. Bacteriol., 63, 551 (1987)
- Oliva-Neto PD, Yokoya F, Bioresour. Technol., 63(1), 17 (1998)
- Rodriguez-Lopez J, Romani A, Gonzalez-Munoz MJ, Garrote G, Parajo JC, Holzforschung, 66, 591 (2012)
- Um BH, Hanley TR, Korean J. Chem. Eng., 25(5), 1094 (2008)
- Drysdale GS, Fleet GH, Am. J. Enol. Vitic., 39(2), 143 (1988)
- Shimazu Y, Watanabe M, J. Ferment. Technol., 59(1), 27 (1981)
- Galanakis CM, Kordulis C, Kanellaki M, Koutinas AA, Bekatorou A, Lycourghiotis A, Bioresour. Technol., 114, 492 (2012)
- Delfini C, Costa A, Am. J. Enol. Vitic., 44(1), 86 (1993)
- Radler F, Yeast-metabolism of organic acids, in: Fleet GH (Eds.), Wine microbiology and biotechnology, Harwood Academic Publishers, Philadelphia, USA(1983).
- Klosowski G, Mikulski D, Grajewski J, Blajet-Kosicka A, Bioresour. Technol., 101(9), 3147 (2010)
- Pawelzik P, Carus M, Hotchkiss J, Narayan R, Selke S, Wellisch M, Weiss M, Wicke B, Parel MK, Resour. Conserv. Recycl., 73, 211 (2013)
- Um BH, Korean Chem. Eng. Res., 51(5), 561 (2013)
- Xu ZP, Afacan A, Chuang DT, Can. J. Chem. Eng., 77(4), 676 (1999)
- Anasthas HM, Gaikar VG, Sep. Sci. Technol., 36(12), 2623 (2001)
- Wiencek JM, Qutubuddin S, Sep. Sci. Technol., 27, 1211 (1992)
- Um BH, Friedman B, van Walsum GP, Holzforschung, 65, 51 (2011)
- Ricker NL, Michaels JN, King CJ, J. Sep. Proc. Technol., 1, 36 (1979)
- King CJ, Chem. Tech., 5, 285 (1992)
- Senol A, J. Chem. Eng. Jpn., 32(6), 717 (1999)
- Sabolova E, Schlosser S, Martak J, J. Chem. Eng. Data, 46, 735 (2001)
- Helsel RW, Chem. Eng. Prog., 73(5), 55 (1977)
- Niitsu M, Sekine T, Bull. Chem. Soc. Jpn., 51, 705 (1978)
- Wardell JM, King CJ, J. Chem. Eng. Data, 23, 144 (1978)
- Hano T, Matsumoto M, Ohtake T, Sasaki K, Kawano Y, J. Chem. Eng. Jpn., 23, 260 (1990)
- Reisinger H, King CJ, Ind. Eng. Chem. Res., 34(3), 845 (1995)
- Juang RS, Wu RT, Sep. Purif. Technol., 17(3), 225 (1999)
- Al-Mudhaf HF, Hegazi MF, Abu-Shady AI, Sep. Purif. Technol., 27(1), 41 (2002)
- Wisniewski M, Pierzchalska M, J. Chem. Technol. Biotechnol., 80(12), 1425 (2005)
- Walton S, van Heiningen A, van Walsum P, Bioresour. Technol., 101(6), 1935 (2010)