화학공학소재연구정보센터
Macromolecular Research, Vol.23, No.8, 776-786, August, 2015
Norbornene end-capped polyimide for low CTE and low residual stress with changes in the diamine linkages
E-mail:
The effects of norbornene (NE) crosslinking and diamine bridge linkages (ether, sulfone, and trifluoromethyl) on polyimide films were investigated. The purpose of this study was to study the behavior of the NE endcapped polyimide with different diamine bridge linkage structure at elevated temperatures on residual stress and modulus change. 5-Norbornene-2,3-dicarboxylic acid was introduced as the end-capping agent in order to increase the ratio of crosslinking in the structure through reverse Diels-Alder reaction. Wide angle X-ray diffraction (WAXD) was measured to study the relation of d-spacing and structure change of the bridge linkage of polymers through NE crosslinking. Coefficient of thermal expansion (CTE) and residual stress were measured to confirm the loaded stress between the substrate and polymer film through a thin film stress analyzer (TFSA). Storage (ε′) and loss modulus (ε″) were studied at elevated temperatures to study the relation of bridge linkage mobility of the polyimide at elevated temperature.
  1. Qu WL, Ko TM, Vora RH, Chung TS, Polymer, 42(15), 6393 (2001)
  2. Kovalev MK, Kalinina F, Androsov DA, Cho C, Polymer, 54, 127 (2013)
  3. Xiao SY, Che LF, Li XX, Wang YL, Microelectron. Eng., 85, 452 (2008)
  4. Ree M, Swanson S, Volksen W, Polymer, 34, 1423 (1993)
  5. Miwa T, Okabe Y, Ishida M, Polymer, 38(19), 4945 (1997)
  6. Sasaki T, Moriuchi H, Yano S, Yokota R, Polymer, 46(18), 6968 (2005)
  7. Song GL, Zhang XD, Wang DM, Zhao XG, Zhou HW, Chen CH, Dang GD, Polymer, 55(15), 3242 (2014)
  8. Lee G, Kim Y, Kwon D, Microelectron. Eng., 87, 2288 (2010)
  9. Numata S, Miwa T, Polymer, 30, 1170 (1989)
  10. Ishii J, Takata A, Oami Y, Yokota R, Vladimirov L, Hasegawa M, Eur. Polym. J., 46, 681 (2010)
  11. Seo J, Han H, Polym. Degrad. Stabil., 77, 477 (2002)
  12. Seo J, Cho KY, Han H, Polym. Degrad. Stabil., 74, 133 (2001)
  13. Kim K, Yoo T, Kim J, Ha H, Han H, J. Appl. Polym. Sci., 132, 41412 (2015)
  14. Ree M, Nunes TL, Czornyj G, Volksen W, Polymer, 33, 1228 (1992)
  15. Jang W, Seo J, Lee C, Paek SH, Han H, J. Appl. Polym. Sci., 113(2), 976 (2009)
  16. Chung H, Lee J, Hwang J, Han H, Polymer, 42(18), 7893 (2001)
  17. Jou JH, Huang PT, Chen HC, Liao CN, Polymer, 33, 967 (1992)
  18. Selladurai M, Sundararajan PR, Sarojadevi M, Chem. Eng. J., 203, 333 (2012)
  19. Socrates G, Infrared and Raman Characteristics Group Frequencies, Univ. of West London, John Wiley & Sons, Chichester, 2004.
  20. Laguitton B, Mison P, Sillion B, Brisson J, Macromolecules, 31(21), 7203 (1998)
  21. Dhara MG, Banerjee S, Prog. Polym. Sci, 35, 1022 (2010)
  22. Liu XL, Wu D, Sun R, Yu LM, Jiang JW, Sheng SR, J. Fluor. Chem., 154, 16 (2013)
  23. Rao VL, Prabhakaran PV, Eur. Polym. J., 28, 363 (1992)
  24. Do JY, Park SK, Ju JJ, Park S, Opt. Mater., 26, 223 (2004)
  25. Nagai A, Takahashi A, Suzuki M, Mukoh A, J. Appl. Polym. Sci., 44, 159 (1992)
  26. Khosravi E, Iqbal F, Musa OM, Polymer, 52(2), 243 (2011)
  27. Falkovich SG, Lyulin SV, Nazarychev VM, Larin SV, Gurtovenko AA, Lukasheva NV, Lyulin AV, J. Polym. Sci. B: Polym. Phys., 52(9), 640 (2014)
  28. Hasegawa M, Sakamoto Y, Tanaka Y, Kobayashi Y, Eur. Polym. J., 46, 1510 (2010)
  29. Numata S, Fujisaki K, Kinjo N, Polymer, 28, 2282 (1987)
  30. Wu H, Drzal LT, Mater. Chem. Phys., 146(1-2), 26 (2014)
  31. Kim SI, Pyo SM, Ree M, Macromolecules, 30(25), 7890 (1997)
  32. Carlier V, Devaux J, Legras R, McGrail PT, Macromolecules, 25, 6646 (1992)
  33. Menard KP, Dynamic Mechanical Analysis a Practical Introduction, CRC Press, Boca Raton, 2008.
  34. Lee-Sullivan P, Dykeman D, Polym. Test, 19, 155 (2000)
  35. Faria R, Duncan JC, Brereton RG, Polym. Test, 26, 402 (2007)