화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.26, No.4, 483-488, August, 2015
해초 Biochar를 이용한 Cr6+과 As3+ 흡착 특성
Adsorption Characteristics of Cr6+ and As3+ Using Seaweed Biochar
E-mail:
초록
본 연구에서는 제주도에서 채집한 Hizikia fusiformis biochar를 이용하여 수용액 상에서 Cr6+과 As3+ 중금속의 흡착 특성을 평가하였다. Cr6+과 As3+ 흡착에 있어서 최적 pH는 각각 pH 2와 pH 6이었다. 동역학적 실험 결과, 대부분의 중금속이 처음 100 min 동안 흡착이 되었으며, 300 min 이후 평형에 도달하였다. 또한, 해초 biochar의 Cr6+과 As3+ 중금속 흡착은 유사 1차 모델과 2차 모델에서 모두 잘 부합하고 있는 것으로 나타났다. 평형 흡착 실험 결과는 Langmuir 모델에 잘 부합했고, Cr6+ (25.91 mg/g)이 As3+ (16.54 mg/g)보다 흡착량이 높았다. 본 연구 결과를 통해, 오염된 환경에서 해초 biochar는 Cr6+ 및 As3+ 중금속의 효과적인 흡착제임을 보였다.
This study examined the adsorption characteristics of Cr6+ and As3+ in the aqueous solution by Hizikia susiformis biochar which was collected from Jeju Island. The optimal pH for Cr6+ and As3+ adsorption were 2 and pH 6, respectively. Kinetic data showed that the adsorption occurred during the first 100 min, and the most of heavy metals were bound to biochars within 300 min. Moreover, the kinetic data presented that the course of adsorption follows the Pseudo first and second order models. The equilibrium data were well fitted by the Langmuir model and the Cr6+ adsorption capacity (25.91 mg/g) was higher than that of As3+ (16.54 mg/g). From these results, the seaweed biochar was shown to be a efficient adsorbent for Cr6+ and As3+ metals in a contaminated environment.
  1. Gundogan R, Acemioglu B, Alma MH, J. Colloid Interface Sci., 269(2), 303 (2004)
  2. Chuah TG, Jumasiah A, Azni I, Katayon S, Choong SYT, Desalination, 175(3), 305 (2005)
  3. Zeng YB, Woo H, Lee G, Park J, Desalination, 257(1-3), 102 (2010)
  4. Mohan D, Pittman CU, J. Hazard. Mater., 142(1-2), 1 (2007)
  5. Yoon JK, Amy G, Chung JW, Sohn JS, Yoon YM, Chemosphere, 77, 228 (2009)
  6. Kongsricharoern N, Polprasert C, Water Sci. Technol., 34, 109 (1996)
  7. Raji C, Anirudhan TS, Water Res., 32, 3772 (1998)
  8. Mbareck C, Nguyen QT, Alaoui OT, Barillier D, J. Hazard. Mater., 171(1-3), 93 (2009)
  9. Malamis S, Katsou E, Takopoulos K, Demetriou P, Loizidou M, J. Hazard. Mater., 209-210, 1 (2012)
  10. Fathima A, Rao JR, Unni Nair B, J. Chem. Technol. Biotechnol., 87(2), 271 (2012)
  11. Yetimoglu EK, Kahraman MV, Bayramoglu G, Ercan O, Apohan NK, Radiat. Phys. Chem., 78, 92 (2009)
  12. Wang BY, Li CP, Liang H, Bioresour. Technol., 146, 803 (2013)
  13. Imamoglu M, Tekir O, Desalination, 228(1-3), 108 (2008)
  14. Karnib M, Kabbani A, Holail H, Olamad Z, Energy Procedia, 50, 113 (2014)
  15. Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D, Vithanage M, Lee SS, Ok YS, Chemosphere, 99, 19 (2014)
  16. Mohan D, Sarswat A, Ok YS, Pittman CU, Bioresour. Technol., 160, 191 (2014)
  17. Cao X, Ma L, Gao B, Harris W, Environ. Sci. Technol., 43, 3285 (2009)
  18. Uchimiya M, Lima IM, Klasson KT, Chang S, Wartelle LH, Rodgers JE, J. Agric. Food Chem., 58, 5538 (2010)
  19. Harvey OR, Herbert BE, Rhue RD, Kuo LJ, Environ. Sci. Technol., 45, 5550 (2011)
  20. Pan J, Jiang J, Xu R, J. Environ. Sci., 25(10), 1957 (2013)
  21. Um BH, Jo SW, Park SJ, J. Korean Wood Sci. Technol., 42(4), 450 (2014)
  22. Li M, Liu Q, Guo LJ, Zhang YP, Lou ZJ, Wang Y, Qian GR, Bioresour. Technol., 141, 83 (2013)
  23. Jung KA, Woo SH, Lim SR, Park JM, Mineral resources from seaweed biochar derived from a fixed-bed pyrolysis system, Contaminated Land, Ecological Assessment and Remediation, 68 (2014).
  24. Choi IW, Seo DC, Kang SW, Lee SG, Seo YJ, Lim BJ, Heo JS, Cho JS, Korean J. Soil Sci. Fert., 46(1), 8 (2013)
  25. Chen XC, Chen GC, Chen LG, Chen YX, Lehmann J, McBride MB, Hay AG, Bioresour. Technol., 102(19), 8877 (2011)
  26. Liu ZG, Zhang FS, J. Hazard. Mater., 167(1-3), 933 (2009)
  27. Ho YS, McKay G, Water Res., 33, 578 (1999)
  28. Ho YS, McKay G, Process Biochem., 34(5), 451 (1999)
  29. Lacher C, Smith RW, Miner. Eng., 15(3), 187 (2002)
  30. Sheng PX, Ting YP, Chen JP, Hong L, J. Colloid Interface Sci., 275(1), 131 (2004)
  31. Ho YS, Bioresour. Technol., 96, 1292 (2005)
  32. Murphy V, Hughes H, McLoughlin P, Chemosphere, 70, 1128 (2008)
  33. Ranjan D, Talat M, Hasan SH, Ind. Eng. Chem. Res., 48(23), 10180 (2009)
  34. Altundogan HS, Altundogan S, Tumen F, Bildik M, Waste Manage., 20, 761 (2000)
  35. Hui KS, Chao CYH, Kot SC, J. Hazard. Mater., 127(1-3), 89 (2005)
  36. Na CK, Han MY, Park HJ, J. Korea Soc. Environ. Eng., 33, 606 (2011)
  37. Kam SK, Lee MG, J. Korea Technol. Soc. Wat. Wastewater Treat, 6(1), 11 (1998)
  38. Basha S, Murthy ZVP, Process Biochem., 42, 1521 (2007)
  39. Murphy V, Hughes H, McLoughlin P, Chemosphere, 70, 1128 (2008)
  40. Babel S, Kurniawan TA, Chemosphere, 54, 951 (2004)
  41. Boddu VM, Abburi K, Talbott JL, Smith ED, Haasch R, Water Res., 42, 633 (2008)
  42. Gupta A, Vidyarthi SR, Sankararamakrishnan N, J. Environ. Chem. Eng., 3, 113 (2015)
  43. Saqib ANS, Waseem A, Khan AF, Mahmood Q, Khan A, Habib A, Khan AR, Ecol. Eng., 51, 88 (2013)
  44. Ranjan D, Talat M, Hasan SH, J. Hazard. Mater., 166(2-3), 1050 (2009)
  45. Sari A, Uluozlu OD, Tuzen M, Chem. Eng. J., 167(1), 155 (2011)