화학공학소재연구정보센터
Clean Technology, Vol.21, No.2, 108-116, June, 2015
폐타이어 열분해에 의한 카본블랙을 이용한 황화수소와 암모니아 제거를 위한 흡착제 개발
Development of Adsorbents for Removal of Hydrogen Sulfide and Ammonia Using Carbon Black from Pyrolysis of Waste Tires
E-mail:
초록
황화수소와 암모니아는 많은 하수처리장과 산업 플랜트로부터의 배출가스에서 발견되어질 수 있는 가장 흔한 악취성분이다. 이들 유해물질들은 인간에게 건강 문제를 일으키고 촉매에 악영향을 미치기 때문에 생활환경과 산업 현장에서의 제거는 매우 중요하다. 본 연구에서는 황화수소와 암모니아에 대한 우수한 흡착능력을 가지는 흡착제를 개발하기 위하여 폐타이어의 열분해 생성물인 카본블랙을 이용하였다. 카본블랙, 금속산화물과 산 또는 염기를 혼합하여 펠렛형 흡착제를 제조하였고, 상온상압에서 고정층 흡착탑의 파과곡선을 이용하여 황화수소와 암모니아에 대한 흡착성능을 평가하였다. 카본블랙, 산화철(III)과 수산화나트륨 혼합물로 제조된 흡착제가 황화수소에 대한 가장 우수한 작업능력을 나타내었다. 암모니아에 대해서는 카본블랙, 산화구리(II), 염산의 혼합물로 제조된 흡착제가 우수한 작업능력을 보였다.
Hydrogen sulfide and ammonia are one of the common malodorous compounds that can be found in emissions from many sewages treatment plants and industrial plants. Therefore, removing these harmful gases from emissions is of significance in both life and industry because they can cause health problems to human and detrimental effects on the catalysts. In this work, pyrolytic carbon blacks from waste tires were used to develop adsorbent with good adsorption capacity for removal of hydrogen and ammonia. Pellet-type adsorbents were prepared by a mixture of carbon black, metal oxide and sodium hydroxide or hydrochloric acid, and their adsorption capacities were estimated by using breakthrough curve of a continuous fixed bed adsorption column at ambient condition. The adsorbent manufactured with a mixture of carbon black, iron oxide(III) and sodium hydroxide showed the maximum working capacity of hydrogen sulfide. For ammonia, maximum working capacity was obtained by the adsorbent manufactured with a mixture of carbon black, copper oxide(II) and hydrochloric acid.
  1. Nurul Islam AKM, Hanaki K, Matsuo T, Water Sci. Technol., 38(3), 337 (1998)
  2. Ministry of Environment, “Roadmap for Reduce of Odor in Sewerage (in Korean),” 2011.
  3. Tsai JH, Jeng FT, Chiang HL, Adsorption, 7, 37 (2001)
  4. Kim DK, Hwang IG, Bae JH, Theor. Appl. Chem. Eng., 8(1), 1405 (2002)
  5. Bandosz TJ, J. Colloid Interface Sci., 246(1), 1 (2002)
  6. Yuan WX, Bandosz TJ, Fuel, 86(17-18), 2736 (2007)
  7. Sahu RC, Patel R, Ray BC, Fuel Process. Technol., 92(8), 1587 (2011)
  8. Le Leuch LM, Bandosz TJ, Carbon, 45, 568 (2007)
  9. Kim KJ, Park CW, Sohn BK, Lee MS, Ahn HG, Appl. Chem., 12(1), 193 (2008)
  10. Huang CC, Li HS, Chen CH, J. Hazard. Mater., 159(2-3), 523 (2008)
  11. Bandosz TJ, Petit C, J. Colloid Interface Sci., 338(2), 329 (2009)
  12. Park N, Bae J, Lee CH, Jeon JK, Clean Technol., 19(2), 121 (2013)
  13. ETRMA, “End of Life Tyres: A Vauavle Resource with Growing Potential,” 2011 Edition, European Type and Rubber Manufacturers’ Association, Brussels, Belgium (2011).
  14. Korea Tire Manufactures Association, Korea (Accessed 2015, 01).
  15. Darmstadt H, Roy C, Kaliaguine S, Carbon, 33, 1449 (1995)
  16. Ariyadejwanich P, Tanthapanichakoon W, Nakagawa K, Mukai SR, Tamon H, Carbon, 41, 157 (2003)
  17. Zhang X, Wang T, Ma L, Chang J, Waste Manage., 28, 2301 (2008)
  18. Islam MR, Joardder MUH, Hasan SM, Takai K, Haniu H, Waste Manage., 31, 2142 (2011)
  19. Williams PT, Waste Manage., 33, 1714 (2013)
  20. McCabe WL, Smith JC, Harriott P, Unit Operations of Chemical Engineering, 6th ed., McGraw Hill, New York, 2001.
  21. Muller C, “Is It Time to Change My Media?,” Purafil, Inc. (2012). (accessed 2015, 01).
  22. Bagreev A, Bandosz TJ, Ind. Eng. Chem. Res., 41(4), 672 (2002)
  23. Shields MA, Dowling NI, Clark PD, Ind. Eng. Chem. Res., 46(23), 7721 (2007)
  24. Zhang LZ, Millet JMM, Ozkan US, J. Mol. Catal. A-Chem., 309(1-2), 63 (2009)
  25. Lamond TG, Metcalfe JE, Walker PL, Carbon, 3, 59 (1965)
  26. http://en.wikipedia.org/wiki/Hydrogen_sulfide (accessed 2015. 02)
  27. http://en.wikipedia.org/wiki/Ammonia (accessed 2015. 02)
  28. http://www.carbonblack.jp/en/cb/tokusei.html (accessed 2015. 02)