화학공학소재연구정보센터
Polymer(Korea), Vol.39, No.4, 579-587, July, 2015
폴리(디메틸 실록산) 성분을 포함하는 폴리우레탄 필름의 물성과 미세 상분리
Physical Properties and Microphase Separation of Polyurethane Containing Poly(dimethyl siloxane) Component
E-mail:
초록
메틸렌디페닐 디이소시아네이트와 1,4-부탄디올을 하드세그먼트(HS) 성분으로 하고, 폴리(디메틸 실록산) (PDMS) 디올과 폴리(테트라메틸렌 에테르 글리콜) (PTMEG) 혼합 폴리올을 소프트세그먼트(SS) 성분으로 하여, HS 함량이 각각 23와 32%이면서 PDMS 성분 비율이 다른 여러가지 PU-Si를 용액중합법으로 합성하고 이들을 필름으로 제조하여 물성과 상분리 구조를 분석하였다. PU-Si 필름에서 PDMS 성분 비율이 커지면 파단응력은 감소하는 반면 파단신도는 증가하였다. PU-Si에 PDMS 성분이 증가할수록 소수성이 커지고 HS와 SS 사이의 상분리는 감소하였다. HS 함량이 32%인 시료들이 HS 함량이 23%인 시료보다 상분리가 잘 되어 있으며, 두 경우 모두 PDMS 성분이 증가하면 상분리 정도가 감소하였다.
Polyurethanes (PUs) containing poly(dimethyl siloxane) (PDMS) unit in soft segment, PU-Si, were synthesized, and their mechanical properties and phase separation were investigated. Various amounts of PDMS units were incorporated into PU via a solution polymerization method in N,N'-dimethylformamide using poly(tetramethylene ether glycol) and PDMS diol as a soft segment and methylene diphenyl diisocyanate and 1,4-butanediol as a hard segment. Two series of PU-Si samples with an HS content of 23% and 32% were prepared and analyzed. Results showed that the elongation-at-break of the PU-Si films increased, breaking stress decreased, and the hydrophobicity of the film increased as the PDMS content in PU-Si increased. SAXS analysis indicated that the microphase separation of the PU-Si film between hard and soft segments decreased with increasing PDMS content, irrespective of the HS content.
  1. Defize T, Riva R, Thomassin JM, Jerome C, Alexandre M, Macromol. Symp., 309, 154 (2011)
  2. Huang WM, Yang B, Zhao Y, Ding Z, J. Mater. Chem., 20, 3367 (2010)
  3. Hearon K, Smith SE, Maher CA, Wilson TS, Maitland DJ, Radiat. Phys. Chem., 83, 111 (2013)
  4. Hamciuc C, Hamciuc E, Okrasa L, Macromol. Res., 19(3), 250 (2011)
  5. Ansari S, Varghese JM, Dayas KR, Polym. Adv. Technol., 20, 459 (2009)
  6. Rahmani S, Entezami AA, Macromol. Res., 19(3), 221 (2011)
  7. Choi T, Weksler J, Padsalgikar A, Runt J, Polymer, 50(10), 2320 (2009)
  8. Ciolino AE, Gomez LR, Vega DA, Villar MA, Valles EM, Polymer, 49(24), 5191 (2008)
  9. Ra SH, Kim YH, Polym.(Korea), 38(5), 602 (2014)
  10. Adhikari R, Gunatillake PA, McCarthy SJ, Meijs CF, J. Appl. Polym. Sci., 78(5), 1071 (2000)
  11. Sheth JP, Aneja A, Wilkes GL, Yilgor E, Atilla GE, Yilgor I, Beyer FL, Polymer, 45(20), 6919 (2004)
  12. Stanton MM, Ducker RE, MacDonald JC, Lambert CR, McGimpsey WG, J. Colloid Interface Sci., 367, 502 (2012)
  13. Schon P, Bagdi K, Molnar K, Markus P, Pukanszky B, Vancso GJ, Eur. Polym. J., 47, 692 (2011)
  14. Hernandez R, Weksler J, Padsalgikar A, Runt J, Macromolecules, 40(15), 5441 (2007)
  15. Kojio K, Matsuo K, Motokucho S, Yoshinaga K, Shimodaira Y, Kimura K, Polym. J., 43, 692 (2011)
  16. Lue SJ, Ou JS, Kuo CH, Chen HY, Yang TH, J. Membr. Sci., 347(1-2), 108 (2010)
  17. Choi T, Weksler J, Padsalgikar A, Runt J, Polymer, 50(10), 2320 (2009)
  18. Glater O, Kratky O, Small Angle X-ray Scattering, Academic Press Inc., New York, pp. 18-50 (1982).
  19. Park K, Lim WH, Ko EA, Lee HS, J. Polym. Sci. B: Polym. Phys., 49(12), 890 (2011)
  20. Nagano S, Koizuka Y, Murase T, Sano M, Shinohara Y, Amemiya Y, Seki T, Angew. Chem.-Int. Edit., 51, 5884 (2012)