Polymer(Korea), Vol.39, No.4, 579-587, July, 2015
폴리(디메틸 실록산) 성분을 포함하는 폴리우레탄 필름의 물성과 미세 상분리
Physical Properties and Microphase Separation of Polyurethane Containing Poly(dimethyl siloxane) Component
E-mail:
초록
메틸렌디페닐 디이소시아네이트와 1,4-부탄디올을 하드세그먼트(HS) 성분으로 하고, 폴리(디메틸 실록산) (PDMS) 디올과 폴리(테트라메틸렌 에테르 글리콜) (PTMEG) 혼합 폴리올을 소프트세그먼트(SS) 성분으로 하여, HS 함량이 각각 23와 32%이면서 PDMS 성분 비율이 다른 여러가지 PU-Si를 용액중합법으로 합성하고 이들을 필름으로 제조하여 물성과 상분리 구조를 분석하였다. PU-Si 필름에서 PDMS 성분 비율이 커지면 파단응력은 감소하는 반면 파단신도는 증가하였다. PU-Si에 PDMS 성분이 증가할수록 소수성이 커지고 HS와 SS 사이의 상분리는 감소하였다. HS 함량이 32%인 시료들이 HS 함량이 23%인 시료보다 상분리가 잘 되어 있으며, 두 경우 모두 PDMS 성분이 증가하면 상분리 정도가 감소하였다.
Polyurethanes (PUs) containing poly(dimethyl siloxane) (PDMS) unit in soft segment, PU-Si, were synthesized, and their mechanical properties and phase separation were investigated. Various amounts of PDMS units were incorporated into PU via a solution polymerization method in N,N'-dimethylformamide using poly(tetramethylene ether glycol) and PDMS diol as a soft segment and methylene diphenyl diisocyanate and 1,4-butanediol as a hard segment. Two series of PU-Si samples with an HS content of 23% and 32% were prepared and analyzed. Results showed that the elongation-at-break of the PU-Si films increased, breaking stress decreased, and the hydrophobicity of the film increased as the PDMS content in PU-Si increased. SAXS analysis indicated that the microphase separation of the PU-Si film between hard and soft segments decreased with increasing PDMS content, irrespective of the HS content.
- Defize T, Riva R, Thomassin JM, Jerome C, Alexandre M, Macromol. Symp., 309, 154 (2011)
- Huang WM, Yang B, Zhao Y, Ding Z, J. Mater. Chem., 20, 3367 (2010)
- Hearon K, Smith SE, Maher CA, Wilson TS, Maitland DJ, Radiat. Phys. Chem., 83, 111 (2013)
- Hamciuc C, Hamciuc E, Okrasa L, Macromol. Res., 19(3), 250 (2011)
- Ansari S, Varghese JM, Dayas KR, Polym. Adv. Technol., 20, 459 (2009)
- Rahmani S, Entezami AA, Macromol. Res., 19(3), 221 (2011)
- Choi T, Weksler J, Padsalgikar A, Runt J, Polymer, 50(10), 2320 (2009)
- Ciolino AE, Gomez LR, Vega DA, Villar MA, Valles EM, Polymer, 49(24), 5191 (2008)
- Ra SH, Kim YH, Polym.(Korea), 38(5), 602 (2014)
- Adhikari R, Gunatillake PA, McCarthy SJ, Meijs CF, J. Appl. Polym. Sci., 78(5), 1071 (2000)
- Sheth JP, Aneja A, Wilkes GL, Yilgor E, Atilla GE, Yilgor I, Beyer FL, Polymer, 45(20), 6919 (2004)
- Stanton MM, Ducker RE, MacDonald JC, Lambert CR, McGimpsey WG, J. Colloid Interface Sci., 367, 502 (2012)
- Schon P, Bagdi K, Molnar K, Markus P, Pukanszky B, Vancso GJ, Eur. Polym. J., 47, 692 (2011)
- Hernandez R, Weksler J, Padsalgikar A, Runt J, Macromolecules, 40(15), 5441 (2007)
- Kojio K, Matsuo K, Motokucho S, Yoshinaga K, Shimodaira Y, Kimura K, Polym. J., 43, 692 (2011)
- Lue SJ, Ou JS, Kuo CH, Chen HY, Yang TH, J. Membr. Sci., 347(1-2), 108 (2010)
- Choi T, Weksler J, Padsalgikar A, Runt J, Polymer, 50(10), 2320 (2009)
- Glater O, Kratky O, Small Angle X-ray Scattering, Academic Press Inc., New York, pp. 18-50 (1982).
- Park K, Lim WH, Ko EA, Lee HS, J. Polym. Sci. B: Polym. Phys., 49(12), 890 (2011)
- Nagano S, Koizuka Y, Murase T, Sano M, Shinohara Y, Amemiya Y, Seki T, Angew. Chem.-Int. Edit., 51, 5884 (2012)