Journal of Industrial and Engineering Chemistry, Vol.25, 239-249, May, 2015
Physicochemical characteristics according to aging of Fe-zeolite and V2O5-WO3-TiO2 SCR for diesel engines
E-mail:
The purpose of this study is to investigate the physicochemical characteristics according to hydrothermal aging, sulfur poisoning and HCs co-existence of Fe-zeolite (1), (2) and V2O5-WO3-TiO2 SCR which are appropriate for diesel engines. Fe-zeolite (1) is a zeolite with low Fe content (∼1 wt.%) while Fe-zeolite (2) is a zeolite with a high Fe content (1.8 wt.%). The BET specific surface area of Fe-zeolite (2) was smaller than that of Fe-zeolite (1) but its NH3 storage capacity was larger than Fe-zeolite (1) because Fe-zeolite (2) has a large amount of Al content that can absorb NH3. In the case of Fe-zeolite (2), thermal durability was strong, When mildly set in hydrothermal aging for 12 and 24 h at 600 and 700 °C respectively, the NOx conversion rate was higher than the Fresh catalyst above 350 °C. The active site of the catalyst, which is an Fe site, was damaged during the hydrothermal aging process, resulting in a decline in low-temperature performance. However, at higher temperatures, the NH3 oxidation was largely hindered by the damage to the Fe site. The highest degree of coking arose for Fe-zeolite (1). On the other hand, V2O5-WO3-TiO2 SCR, exhibited high durability against HCs, and experienced less coke deposition. Of the three catalysts V2O3-WO3-TiO2 SCR suffered the least sulfur poisoning (0.007 g/L). Due to the effects of Brønsted acid site, its resistance to sulfur poisoning is sufficient for reduction catalysts for exhaust gases from ship engines.
- Seo CK, Kim H, Choi B, Lim MT, Lee CH, Lee CB, Catal. Today, 164(1), 507 (2011)
- Choi B, Lee KS, Chem. Eng. J., 240, 476 (2014)
- Ko SC, Oh KC, Seo CK, Lee CB, Int. J. Automot. Technol., 15, 347 (2014)
- Seo CK, Kim H, Choi B, Lim MT, J. Ind. Eng. Chem., 17(3), 382 (2011)
- Xu L, Watkins W, Snow R, Graham G, McCabe R, SAE Tech. Paper, 2007-01-1582, 2007.
- Schuler A, Votsmeier M, Kiwic P, Gieshoff J, Hautpmann W, Drochner A, Vogel H, Chem. Eng. J., 154(1-3), 333 (2009)
- Grossale A, Nova I, Tronconi E, Catal. Today, 136, 18 (2008)
- Schedel H, Fische S, SAE Tech. Paper, 2004-01-0075, 2004.
- Vargas MAL, Casanova M, Trovarelli A, Busca G, Appl. Catal. B: Environ., 75(3-4), 303 (2007)
- Kang W, Choi B, Kim H, J. Ind. Eng. Chem., 19(4), 1406 (2013)
- Choo ST, Yim SD, Nam IS, Ham SW, Lee JB, Appl. Catal. B: Environ., 44(3), 237 (2003)
- Kobayashi M, Kuma R, Masaki S, Sugishima N, Appl. Catal. B: Environ., 60(3-4), 173 (2005)
- Ciardelli C, Nova I, Tronconi E, Chatterjee D, Bandl-Konrad B, Weibel M, Krutzsch B, Appl. Catal. B: Environ., 70(1-4), 80 (2007)
- Jung KY, Jung YR, Jeon JK, Kim JH, Park YK, Kim S, J. Ind. Eng. Chem., 17(1), 144 (2011)
- Ciardelli C, Nova I, Tronconi E, Konrad B, Chatterjee D, Ecke K, Weibel M, Chem. Eng. Sci., 59(22-23), 5301 (2004)
- Lisi L, Pirone R, Russo G, Stanzione V, Chem. Eng. J., 154(1-3), 341 (2009)
- Cheng Y, Hoard J, Lambert C, Kwak JH, Peden CHF, Catal. Today, 136, 34 (2008)
- Park JH, Park HJ, Nam IS, Shin CH, Lee JH, Cho BK, Oh SH, J. Catal., 240, 45 (2006)
- de Oliveira MLM, Silva CM, Moreno-Tost R, Farias TL, Jimenez-Lopez A, Rodriguez-Castellon E, Appl. Catal. B: Environ., 88(3-4), 420 (2009)
- Cheng Y, Montreuil C, Cavataio G, Lambert C, SAE Tech. Paper, 2008-01-1023, 2008.
- Verdier S, Rohart E, Bradshaw H, Harris D, Bichon P, Delahay G, SAE Technical Paper, 2008-01-1022, 2008.
- Si ZC, Weng D, Wu XD, Li J, Li G, J. Catal., 271(1), 43 (2010)
- Xia QH, Hidajat K, Kawi S, J. Catal., 205, 31 (2002)
- Das D, Mishra HK, Pradhan NC, Dalai AK, Parida KM, Microporous Mesoporous Mater., 80, 327 (2005)
- Mathieu Y, Tzanis L, Soulard M, Patarin J, Vierling M, Moliere M, Fuel Process. Technol., 114, 81 (2013)
- Wang XF, Xiong SM, Chem. Phys., 135, 541 (2012)
- Seo CK, Choi BC, Kim HN, Lee CH, Lee CB, Chem. Eng. J., 191, 331 (2013)