화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.25, 239-249, May, 2015
Physicochemical characteristics according to aging of Fe-zeolite and V2O5-WO3-TiO2 SCR for diesel engines
E-mail:
The purpose of this study is to investigate the physicochemical characteristics according to hydrothermal aging, sulfur poisoning and HCs co-existence of Fe-zeolite (1), (2) and V2O5-WO3-TiO2 SCR which are appropriate for diesel engines. Fe-zeolite (1) is a zeolite with low Fe content (∼1 wt.%) while Fe-zeolite (2) is a zeolite with a high Fe content (1.8 wt.%). The BET specific surface area of Fe-zeolite (2) was smaller than that of Fe-zeolite (1) but its NH3 storage capacity was larger than Fe-zeolite (1) because Fe-zeolite (2) has a large amount of Al content that can absorb NH3. In the case of Fe-zeolite (2), thermal durability was strong, When mildly set in hydrothermal aging for 12 and 24 h at 600 and 700 °C respectively, the NOx conversion rate was higher than the Fresh catalyst above 350 °C. The active site of the catalyst, which is an Fe site, was damaged during the hydrothermal aging process, resulting in a decline in low-temperature performance. However, at higher temperatures, the NH3 oxidation was largely hindered by the damage to the Fe site. The highest degree of coking arose for Fe-zeolite (1). On the other hand, V2O5-WO3-TiO2 SCR, exhibited high durability against HCs, and experienced less coke deposition. Of the three catalysts V2O3-WO3-TiO2 SCR suffered the least sulfur poisoning (0.007 g/L). Due to the effects of Brønsted acid site, its resistance to sulfur poisoning is sufficient for reduction catalysts for exhaust gases from ship engines.
  1. Seo CK, Kim H, Choi B, Lim MT, Lee CH, Lee CB, Catal. Today, 164(1), 507 (2011)
  2. Choi B, Lee KS, Chem. Eng. J., 240, 476 (2014)
  3. Ko SC, Oh KC, Seo CK, Lee CB, Int. J. Automot. Technol., 15, 347 (2014)
  4. Seo CK, Kim H, Choi B, Lim MT, J. Ind. Eng. Chem., 17(3), 382 (2011)
  5. Xu L, Watkins W, Snow R, Graham G, McCabe R, SAE Tech. Paper, 2007-01-1582, 2007.
  6. Schuler A, Votsmeier M, Kiwic P, Gieshoff J, Hautpmann W, Drochner A, Vogel H, Chem. Eng. J., 154(1-3), 333 (2009)
  7. Grossale A, Nova I, Tronconi E, Catal. Today, 136, 18 (2008)
  8. Schedel H, Fische S, SAE Tech. Paper, 2004-01-0075, 2004.
  9. Vargas MAL, Casanova M, Trovarelli A, Busca G, Appl. Catal. B: Environ., 75(3-4), 303 (2007)
  10. Kang W, Choi B, Kim H, J. Ind. Eng. Chem., 19(4), 1406 (2013)
  11. Choo ST, Yim SD, Nam IS, Ham SW, Lee JB, Appl. Catal. B: Environ., 44(3), 237 (2003)
  12. Kobayashi M, Kuma R, Masaki S, Sugishima N, Appl. Catal. B: Environ., 60(3-4), 173 (2005)
  13. Ciardelli C, Nova I, Tronconi E, Chatterjee D, Bandl-Konrad B, Weibel M, Krutzsch B, Appl. Catal. B: Environ., 70(1-4), 80 (2007)
  14. Jung KY, Jung YR, Jeon JK, Kim JH, Park YK, Kim S, J. Ind. Eng. Chem., 17(1), 144 (2011)
  15. Ciardelli C, Nova I, Tronconi E, Konrad B, Chatterjee D, Ecke K, Weibel M, Chem. Eng. Sci., 59(22-23), 5301 (2004)
  16. Lisi L, Pirone R, Russo G, Stanzione V, Chem. Eng. J., 154(1-3), 341 (2009)
  17. Cheng Y, Hoard J, Lambert C, Kwak JH, Peden CHF, Catal. Today, 136, 34 (2008)
  18. Park JH, Park HJ, Nam IS, Shin CH, Lee JH, Cho BK, Oh SH, J. Catal., 240, 45 (2006)
  19. de Oliveira MLM, Silva CM, Moreno-Tost R, Farias TL, Jimenez-Lopez A, Rodriguez-Castellon E, Appl. Catal. B: Environ., 88(3-4), 420 (2009)
  20. Cheng Y, Montreuil C, Cavataio G, Lambert C, SAE Tech. Paper, 2008-01-1023, 2008.
  21. Verdier S, Rohart E, Bradshaw H, Harris D, Bichon P, Delahay G, SAE Technical Paper, 2008-01-1022, 2008.
  22. Si ZC, Weng D, Wu XD, Li J, Li G, J. Catal., 271(1), 43 (2010)
  23. Xia QH, Hidajat K, Kawi S, J. Catal., 205, 31 (2002)
  24. Das D, Mishra HK, Pradhan NC, Dalai AK, Parida KM, Microporous Mesoporous Mater., 80, 327 (2005)
  25. Mathieu Y, Tzanis L, Soulard M, Patarin J, Vierling M, Moliere M, Fuel Process. Technol., 114, 81 (2013)
  26. Wang XF, Xiong SM, Chem. Phys., 135, 541 (2012)
  27. Seo CK, Choi BC, Kim HN, Lee CH, Lee CB, Chem. Eng. J., 191, 331 (2013)