화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.25, 78-88, May, 2015
A novel methodology for the modeling of CO2 absorption in monoethanolamine (MEA) using discrimination of rival kinetics
E-mail:
This paper suggests a new approach for the design of a multi-phase reactor and its optimization, focusing on close interaction among the laboratory experiments, rigorous modeling of reaction system, and design of reactors. A new methodology of “discrimination of rival kinetics” was developed to obtain a set of accurate kinetics for the identified reaction mechanisms, and this approach allowed us to develop more robust reactor design by making full use of the experimental data, avoiding unnecessary laboratory experiments. A case study of ‘CO2 absorption in an aqueous monoethanolamine solution’ in a packed bed reactor was used to illustrate the methodology.
  1. Zhang W, (Ph.D. thesis), University of Manchester Institute of Science and echnology (UMIST), Manchester, UK, 2004.
  2. Mishra SK, Social Science Research Network. hhttp://papers.ssrn.com/sol3/papers.cfm?abstract_id=933827i, 2006.
  3. Azizi N, Zolfaghari S, Comput. Oper. Res., 31(14), 2439 (2004)
  4. Jacobson BD, Koch SJ, Atlas SR, American Physical Society, March Meeting, 2013, 18-22
  5. Wang Y, Chae S, Im J, Ho S, Electronic Components & Technology Conference, May meeting, 2013, 1953-1958.
  6. Kirkpatrick S, Gelatt CD, Vecchi MP, Science, 220(4598), 671 (1983)
  7. Hwang S, (Ph.D. thesis), University of Manchester Institute of Science and Technology (UMIST), Manchester, UK, 2004.
  8. Zhu BH, Liu QC, Zhou Q, Yang J, Ding J, Wen J, Chem. Eng. Technol., 37(4), 635 (2014)
  9. Gupta M, Silva EF, Hartono A, Svendsen HF, J. Phys. Chem. B, 117(32), 9457 (2013)
  10. Arachchige USPR, Mohsin M, Melaaen MC, Int. J. Energy Environ., 4(1), 39 (2013)
  11. Hartono A, Mba EO, Svendsen HF, J. Chem. Eng. Data, 59(6), 1808 (2014)
  12. Aouini I, Ledoux A, Estel L, Mary S, Oil Gas Sci. Technol.-Rev. IFP, http://dx.doi.org/10.2516/ogst/2013205. (2014)
  13. Sada E, Kumazawa H, Butt A, Am. Inst. Chem. Eng. J., 22(1), 196 (1976)
  14. Sada E, Kumazawa H, Butt A, Hayashi D, Chem. Eng. Sci., 31(9), 839 (1976)
  15. Laddha SS, Danckwerts PV, Chem. Eng. Sci., 36(3), 479 (1981)
  16. Fuster CA, Midoux N, Laurent A, Charpentier JC, Chem. Eng. Sci., 35(8), 1717 (1980)
  17. Barth D, Tondre C, Delpuech J, Int. J. Chem. Kinet., 18(4), 445 (1986)
  18. Crooks JE, Donnellan JP, J. Chem. Soc.-Perkin Trans. 2, 4, 331 (1989)
  19. Astarita G, Chem. Eng. Sci., 16, 202 (1961)
  20. Clarke JKA, Ind. Eng. Chem. Fundam., 3(3), 230 (1964)
  21. Blauwhoff PM, Versteeg GF, Van Swaaij WM, Chem. Eng. Sci., 39(2), 207 (1984)
  22. Versteeg G, Van Swaaij W, J. Chem. Eng. Data, 33(1), 29 (1988)
  23. Aboudheir A, Tontiwachwuthikul P, Chakma A, Idem R, Can. J. Chem. Eng., 81(3-4), 604 (2003)
  24. Aboudheir A, (Ph.D. thesis), University of Regina, Regina SK, 2002.
  25. Deshmukh RD, Mather AE, Chem. Eng. Sci., 36(2), 355 (1981)
  26. Austgen DM, Rochelle GT, Peng X, Chen CC, Ind. Eng. Chem. Res., 28(7), 1060 (1989)
  27. Rinker EB, Ashour SS, Sandall OC, Ind. Eng. Chem. Res., 35(4), 1107 (1996)
  28. Monteiro JGMS, Pinto DDD, Luo X, Knuutila H, Hussain S, Mba E, Hartono A, Svendsen HF, Energy Proc., 37, 1888 (2013)
  29. Thee H, Suryaputradinata YA, Mumford KA, Smith KH, da Silva G, Kentish SE, Stevens GW, Chem. Eng. J., 210, 271 (2012)
  30. Zeng Q, Guo YC, Niu ZQ, Lin WY, Fuel Process. Technol., 108, 76 (2013)
  31. Pandya JD, Chem. Eng. Commun., 19(4-6), 343 (1983)
  32. Onda K, Takeuchi H, Okumoto Y, J. Chem. Eng. Jpn., 1, 56 (1968)
  33. Wellek RM, Brunson RJ, Law FH, Can. J. Chem. Eng., 56(2), 181 (1978)
  34. Kim I, Hoff KA, Hessen ET, Haug-Wargerg T, Svendsen HF, Chem. Eng. Sci., 64(9), 2027 (2007)
  35. Sanyal D, Vasistha N, Saraf DN, Ind. Eng. Chem. Res., 27(11), 2149 (1988)
  36. Aroonwilas A, Tontiwachwuthikul P, Chem. Eng. Sci., 55(18), 3651 (2000)