화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.23, 238-242, March, 2015
CO2/CH4 separation through a novel commercializable three-phase PEBA/PEG/NaX nanocomposite membrane
E-mail:
Three-phase polymer/liquid/solid (PEBA/PEG/nanozeolite X) mixed matrix membranes were synthesized. Effects of PEG and/or nanoparticle on CO2 and CH4 permeabilities and CO2/CH4 selectivity of the membranes were investigated. The synthesized membranes were characterized using AFM and SEM. CO2 Permeability and selectivity in the membranes increased with feed pressure and PEG loading. The PEBA membrane with loadings of 30% PEG and 10% nanozeolite showed the best performance; its CO2 permeability and CO2/CH4 selectivity at 8 bar were 95 Barrer and 45, respectively. Based on Robeson's upper bound, both the three-phase membranes of this work would be proper for being commercialized.
  1. Koros WJ, Mahajan R, J. Membr. Sci., 175(2), 181 (2000)
  2. Stern SA, J. Membr. Sci., 94, 1 (1994)
  3. Maier G, Angew. Chem.-Int. Edit., 37, 2960 (1998)
  4. Kim S, Pechar TW, Marand E, Desalination, 192(1-3), 330 (2006)
  5. Merkel TC, He ZJ, Pinnau I, Freeman BD, Meakin P, Hill AJ, Macromolecules, 36(18), 6844 (2003)
  6. He ZJ, Pinnau I, Morisato A, Desalination, 146(1-3), 11 (2002)
  7. Sadeghi M, Khanbabaei G, Dehaghani AHS, Sadeghi M, Aravand MA, Akbarzade M, Khatti S, J. Membr. Sci., 322(2), 423 (2008)
  8. Kesting RE, Fritzsche AK, Polymeric Gas Separation Membranes, Wiley, New York, NY, 1993.
  9. Cheremisinoff NP, Handbook of Polymer Science and Technology, 4, Dekker, New York, 1989p. 499.
  10. Mustafa A, Kusworo, Busairi A, Ismail AF, Int. J. Waste Resour., 2, 22 (2012)
  11. Schell WJ, J. Membr. Sci., 22, 217 (1985)
  12. Rautenbach R, Welsch K, Desalination, 87, 107 (1994)
  13. Kulprathipanja S, J. Charoenphol, 6, 726 (2004)
  14. Vijitjunya P, Thesis MS, the Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand. (2001).
  15. Kulprathipanja S, Soontraratpong J, Chiou JJ, U.S. Patent. (2005) 11/216823.
  16. Rahman MM, Filiz V, Shishatskiy S, Abetz C, Neumann S, Bolmer S, Khan MM, Abetz V, J. Membr. Sci., 437, 286 (2013)
  17. Li T, Pan Y, Peinemann KV, Lai Z, J. Membr. Sci., 425-426, 235 (2013)
  18. Joseph R, Flesher JR, in: Seymour RB, Kirshenbaum GS (Eds.), High Performance Polymers: Their Origins and Development, Elsevier, New York, NY, 1986, p. 401.
  19. Deleens G, in: Legge NR, Holden G, Schroeder HE (Eds.), Thermoplastic Elastomers: A Comprehensive Review, 27, Hanser Publisher, Munich, 1987, p. 215.
  20. Murali RS, Sridhar S, Sankarshana T, Ravikumar YVL, Ind. Eng. Chem. Res., 49(14), 6530 (2010)
  21. Bastani D, Esmaeili N, Asadollahi M, J. Ind. Eng. Chem., 19(2), 375 (2013)
  22. Asghari M, Mohammadi T, Aziznia A, Danayi MR, Moosavi SH, Alamdari RF, Agand F, Desalination, 220(1-3), 65 (2008)
  23. http://www.pebax.com/export/sites/pebax/.content/medias/downloads/literature/tds-pebax-mh1657.pdf
  24. Car A, Stropnik C, Yave W, Peinemann KV, J. Membr. Sci., 307(1), 88 (2008)
  25. Yang ZZ, Song QW, He LN, Capture and Utilization of Carbon Dioxide with Polyethylene Glycol, Springer, New York, 2012.
  26. Kamarudin KS, Mat H, Hamdan H, Ph.D. Dissertation, Universiti Teknology Malaysia, Malaysia. (2007).
  27. Asghari M, Mohammadi T, Samimi A, Fouladi M, Alamdari RF, Agand F, Membr. Technol., 3, 9 (2008)
  28. Asghari M, Hassanvand A, Mohammadi T, Adsorption, 19, 51 (2013)
  29. Hassanvand A, Asghari M, J. Ceram. Process. Res., 13, 56 (2012)
  30. Stern SA, J. Polym. Sci. B: Polym. Phys., 6, 933 (1968)
  31. Kim H, Kim HG, Kim S, Kim SS, J. Membr. Sci., 334, 211 (2009)
  32. Ismail AF, Lorna W, Sep. Purif. Technol., 27(3), 173 (2002)
  33. Aroon MA, Ismail AF, Matsuura T, Montazer-Rahmati MM, Sep. Purif. Technol., 75(3), 229 (2010)
  34. Lin H, Freeman BD, J. Mol. Struct., 739, 57 (2005)