화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.25, No.1, 48-53, January, 2015
Rapid Synthesis and Consolidation of Nanostructured Ti-TiC Composites from TiH2 and CNT by Pulsed Current Activated Heating
E-mail:
TiH2 nanopowder was made by high energy ball milling. The milled TiH2 and CNT powders were then simultaneously synthesized and consolidated using pulsed current activated sintering (PCAS) within one minute under an applied pressure of 80 MPa. The milling did not induce any reaction between the constituent powders. Meanwhile, PCAS of the TiH2-CNT mixture produced a Ti-TiC composite according to the reaction (0.92TiH2 + 0.08CNT→0.84Ti + 0.08TiC + 0.92H2, 0.84TiH2 + 0.16CNT→0.68Ti + 0.16TiC + 0.84H2). Highly dense nanocrystalline Ti-TiC composites with a relative density of up to 99.7% were obtained. The hardness and fracture toughness of the dense Ti-8 mole% TiC and Ti-16 mole% TiC produced by PCAS were also investigated. The hardness of the Ti-8 mole% TiC and Ti-16 mole% TiC composites was higher than that of Ti. The hardness value of the Ti-16 mole% TiC composite was higher than that of the Ti-8 mole% TiC composite without a decrease in fracture toughness.
  1. El-Eskandarany MS, J. Alloy. Compd., 305, 225 (2000)
  2. Fu L, Cao LH, Fan YS, Scr. Mater., 44, 1061 (2001)
  3. Kang HS, Shon IJ, Doh JM, Yoon JK, Mater. Trans., 55(7), 1109 (2014)
  4. Shon IJ, Kang HS, Doh JM, Park BJ, Yoon JK, Mater. Trans., 53, 1539 (2012)
  5. Fang Z, Eason JW, Int. J. Refractory Met. Hard Mater., 13, 297 (1995)
  6. Shon IJ, Na KI, Doh JM, Park HK, Yoon JK, Met. Mater. Int., 19, 99 (2013)
  7. Kwak SM, Park HK, Shon IJ, Korean J. Met. Mater., 51, 314 (2013)
  8. Charlot F, Gaffet E, Zeghmati B, Bernard F, Liepce JC, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 262, 279 (1999)
  9. Lee GW, Shon IJ, Korean J. Met. Mater., 51, 95 (2013)
  10. Beyer MK, Clausen-Schaumann H, Chem. Rev., 105(8), 2921 (2005)
  11. Jung J, Kang S, Scr. Mater., 56, 561 (2007)
  12. Park NR, Shon IJ, Korean J. Met. Mater., 51, 821 (2013)
  13. Park NR, Na KI, Kwon HJ, Lim JW, Shon IJ, Korean J. Met. Mater., 51, 753 (2013)
  14. Shon IJ, Du SL, Doh JM, Yoon JK, Met. Mater. Int., 19, 1041 (2013)
  15. Suryanarayana C, Grant Norton M, X-ray diffraction a practical approach, p. 213, New York, Plenum Press (1998).
  16. Coble RL, J. Appl. Phys., 41, 4798 (1970)
  17. Kim HC, Park HK, Shon IJ, Ko IY, J. Ceram. Process. Res., 7, 327 (2006)
  18. Shen ZJ, Johnsson M, Zhao Z, Nygren M, J. Am. Ceram. Soc., 85(8), 1921 (2002)
  19. Garay JE, Anselmi-Tamburini U, Munir ZA, Glade SC, Asoka- Kumar P, Appl. Phys. Lett., 85, 573 (2004)
  20. Friedman JR, Garay JE, Anselmi-Tamburini U, Munir ZA, Intermetallics, 12, 589 (2004)
  21. JE Garay, U Anselmi-Tamburini, Munir ZA, Acta Mater., 51, 4487 (2003)
  22. Charlot F, Gaffet E, Zeghmati B, Bernard F, Liepce JC, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 262, 279 (1999)
  23. Shon IJ, Du SL, Kang HS, Doh JM, Yoon JK, Mater. Res. Bull., 49, 584 (2014)
  24. Beyer MK, Clausen-Schaumann H, Chem. Rev., 105(8), 2921 (2005)
  25. Anstis GR, Chantikul P, Lawn BR, Marshall DB, J. Am. Ceram. Soc., 64, 533 (1981)
  26. Kim JW, Kang SH, J. Alloy. Compd., 528, 20 (2012)
  27. http://en.wikipedia.org/wiki/Elastic properties of the elements (data page)
  28. Kim NR, Cho SW, Kim WB, Shon IJ, Korean J. Met. Mater., 50(1), 34 (2012)