Applied Chemistry for Engineering, Vol.26, No.3, 251-258, June, 2015
PLLA-block-PMMA 공중합수지의 합성 및 이를 포함하는 PLA 이축연신 필름의 특성
Synthesis of PLLA-block-PMMA Copolymer and Characteristics of Biaxially Oriented PLA Film Including the Same
E-mail:
초록
본 연구에서는 L-lactide를 이용하여 수평균분자량(Mn)과 중량평균분자량(Mw)이 각각 12,000, 14,000 g/mol인 PLLA (Poly L-lactic acid) 수지를 합성하였으며, 이 PLLA를 이용하여 PLLA-Br 중간체를 합성하였다. PLLA-Br 중간체를 이용하여 수평균분자량(Mn)과 중량평균분자량(Mw)이 각각 84,000, 126,000 g/mol인 PLLA-block-PMMA (Poly L-lactic acid-block-Polymethyl methacrylate) 공중합체를 최종적으로 합성하였으며 PLLA-block-PMMA 공중합체의 유리전이온도 (Tg)는 95.5 ℃, 열분해 개시온도는 289 ℃이었다. PLA에 PLLA-block-PMMA를 9 phr 혼용하고 95 ℃에서 3배 이축연신한 다음 120 ℃에서 2 min 동안 저온열처리하여 두께가 50 ± 3 μm인 PLA 필름을 제조하였다. 550 nm 파장에서 측정한 PLA 필름의 빛투과율은 88.5%, 인장강도는 44.5 MPa이었으며 PLA 필름의 인장강도를 현 수준보다 개선하기 위해서는 이축연신후 120 ℃의 온도조건에서 2 min보다 긴 저온열처리시간이 필요하였다.
PLLA-Br intermediate. PLLA-block-PMMA with 84,000 g/mol (Mn) and 126,000 g/mol (Mw) was finally synthesized from PLLA-Br intermediate. The glass transition temperature (Tg) and initial pyrolysis temperature of PLLA-block-PMMA are 95.5 ℃ and 289 ℃, respectively. The PLA film of 50 ± 3 μm thickness was prepared by blending PLA with 9 phr PLLA-block-PMMA followed by stretching biaxially at 3 times under 95 ℃, and annealing at 120 ℃ for 2 min. The light transmittance at 550 nm and tensile strength of the film are 88.5% and 44.5 MPa, respectively. To enhance the tensile strength of PLA film, it was required to keep the film more than 2 min at 120 ℃ during the annealing step after a biaxially orientation.
Keywords:oriented PLA film;PLLA-block-PMMA;PLLA-Br intermediate;simultaneous biaxially orientation. ring-opening polymerization
- Kim GS, Kim MS, Kim BW, Korean Chem. Eng. Res., 50(3), 582 (2012)
- Kim J, Kim MS, Kim BW, Korean Chem. Eng. Res., 49(5), 611 (2011)
- Park HM, Misra M, Drzal LT, Mohanty AK, Biomacromolecules, 5(6), 2281 (2004)
- Perego G, Cella GD, Bastioli C, J. Appl. Polym. Sci., 59(1), 37 (1996)
- Hung CY, Wang CC, Chen CY, Polymer, 54(7), 1860 (2013)
- Tabatabaei SH, Ajji A, J. Appl. Polym. Sci., 124(6), 4854 (2012)
- Kim MS, Kim G, Kim BW, Appl. Chem. Eng., 23(2), 169 (2012)
- Zhang GB, Zhang JM, Wang SG, Shen DY, J. Polym. Sci. B: Polym. Phys., 41(1), 23 (2003)
- Le KP, Lehman R, Remmert J, VanNess K, Ward PML, Idol JD, J. Biomater. Sci.-Polym. Ed., 17, 121 (2006)
- Cossement D, Gouttebaron R, Cornet V, Viville P, Hecq M, Lazzaroni R, Appl. Surf. Sci., 252(19), 6636 (2006)
- Li SH, Woo EM, Polym. Int., 57, 1242 (2008)
- Oh JK, Royal Soc. Chem., 10.1039/c0sm01539c
- Wu CP, Wang CC, Chen CY, Polym. Phys., 10.1002/polb.23492
- Kaihara S, Matsumura S, Mikos AG, Fisher JP, Nat. Protocol., 2, 2767 (2007)
- Choochottiros C, Park E, Chin IJ, J. Ind. Eng. Chem., 18(3), 993 (2012)
- Bagheri M, Motirasoul F, J. Polym. Res., 10.1007/s10956-012-0059-3 (2013)
- Choochottiros C, Chin IJ, Eur. Polym. J., 49, 957 (2013)
- Chun SW, Kim SH, Kim YH, Kang HJ, Polym.(Korea), 24(3), 333 (2000)
- Wang C, Li H, Zhao X, Biomaterials, 25, 5797 (2004)
- Wu JC, Huang BH, Hsueh ML, Lai SL, Lin CC, Polymer, 46(23), 9784 (2005)
- Umare PS, Tembe GL, Rao KV, Satpathy US, Trivedi B, J. Mol. Catal. A-Chem., 268(1-2), 235 (2007)
- Lee KW, Park HS, Kim YH, Text. Sci. Eng., 47, 406 (2010)
- Ji BC, Yoon WS, Kim SY, J. Korean Fiber Soc., 30, 328 (1993)
- Ji BC, Yoon WS, Kim SY, J. Korean Fiber Soc., 30, 379 (1993)
- Lee JG, Park SH, Kim SH, Polym.(Korea), 34(6), 579 (2010)