화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.26, No.3, 251-258, June, 2015
PLLA-block-PMMA 공중합수지의 합성 및 이를 포함하는 PLA 이축연신 필름의 특성
Synthesis of PLLA-block-PMMA Copolymer and Characteristics of Biaxially Oriented PLA Film Including the Same
E-mail:
초록
본 연구에서는 L-lactide를 이용하여 수평균분자량(Mn)과 중량평균분자량(Mw)이 각각 12,000, 14,000 g/mol인 PLLA (Poly L-lactic acid) 수지를 합성하였으며, 이 PLLA를 이용하여 PLLA-Br 중간체를 합성하였다. PLLA-Br 중간체를 이용하여 수평균분자량(Mn)과 중량평균분자량(Mw)이 각각 84,000, 126,000 g/mol인 PLLA-block-PMMA (Poly L-lactic acid-block-Polymethyl methacrylate) 공중합체를 최종적으로 합성하였으며 PLLA-block-PMMA 공중합체의 유리전이온도 (Tg)는 95.5 ℃, 열분해 개시온도는 289 ℃이었다. PLA에 PLLA-block-PMMA를 9 phr 혼용하고 95 ℃에서 3배 이축연신한 다음 120 ℃에서 2 min 동안 저온열처리하여 두께가 50 ± 3 μm인 PLA 필름을 제조하였다. 550 nm 파장에서 측정한 PLA 필름의 빛투과율은 88.5%, 인장강도는 44.5 MPa이었으며 PLA 필름의 인장강도를 현 수준보다 개선하기 위해서는 이축연신후 120 ℃의 온도조건에서 2 min보다 긴 저온열처리시간이 필요하였다.
PLLA-Br intermediate. PLLA-block-PMMA with 84,000 g/mol (Mn) and 126,000 g/mol (Mw) was finally synthesized from PLLA-Br intermediate. The glass transition temperature (Tg) and initial pyrolysis temperature of PLLA-block-PMMA are 95.5 ℃ and 289 ℃, respectively. The PLA film of 50 ± 3 μm thickness was prepared by blending PLA with 9 phr PLLA-block-PMMA followed by stretching biaxially at 3 times under 95 ℃, and annealing at 120 ℃ for 2 min. The light transmittance at 550 nm and tensile strength of the film are 88.5% and 44.5 MPa, respectively. To enhance the tensile strength of PLA film, it was required to keep the film more than 2 min at 120 ℃ during the annealing step after a biaxially orientation.
  1. Kim GS, Kim MS, Kim BW, Korean Chem. Eng. Res., 50(3), 582 (2012)
  2. Kim J, Kim MS, Kim BW, Korean Chem. Eng. Res., 49(5), 611 (2011)
  3. Park HM, Misra M, Drzal LT, Mohanty AK, Biomacromolecules, 5(6), 2281 (2004)
  4. Perego G, Cella GD, Bastioli C, J. Appl. Polym. Sci., 59(1), 37 (1996)
  5. Hung CY, Wang CC, Chen CY, Polymer, 54(7), 1860 (2013)
  6. Tabatabaei SH, Ajji A, J. Appl. Polym. Sci., 124(6), 4854 (2012)
  7. Kim MS, Kim G, Kim BW, Appl. Chem. Eng., 23(2), 169 (2012)
  8. Zhang GB, Zhang JM, Wang SG, Shen DY, J. Polym. Sci. B: Polym. Phys., 41(1), 23 (2003)
  9. Le KP, Lehman R, Remmert J, VanNess K, Ward PML, Idol JD, J. Biomater. Sci.-Polym. Ed., 17, 121 (2006)
  10. Cossement D, Gouttebaron R, Cornet V, Viville P, Hecq M, Lazzaroni R, Appl. Surf. Sci., 252(19), 6636 (2006)
  11. Li SH, Woo EM, Polym. Int., 57, 1242 (2008)
  12. Oh JK, Royal Soc. Chem., 10.1039/c0sm01539c
  13. Wu CP, Wang CC, Chen CY, Polym. Phys., 10.1002/polb.23492
  14. Kaihara S, Matsumura S, Mikos AG, Fisher JP, Nat. Protocol., 2, 2767 (2007)
  15. Choochottiros C, Park E, Chin IJ, J. Ind. Eng. Chem., 18(3), 993 (2012)
  16. Bagheri M, Motirasoul F, J. Polym. Res., 10.1007/s10956-012-0059-3 (2013)
  17. Choochottiros C, Chin IJ, Eur. Polym. J., 49, 957 (2013)
  18. Chun SW, Kim SH, Kim YH, Kang HJ, Polym.(Korea), 24(3), 333 (2000)
  19. Wang C, Li H, Zhao X, Biomaterials, 25, 5797 (2004)
  20. Wu JC, Huang BH, Hsueh ML, Lai SL, Lin CC, Polymer, 46(23), 9784 (2005)
  21. Umare PS, Tembe GL, Rao KV, Satpathy US, Trivedi B, J. Mol. Catal. A-Chem., 268(1-2), 235 (2007)
  22. Lee KW, Park HS, Kim YH, Text. Sci. Eng., 47, 406 (2010)
  23. Ji BC, Yoon WS, Kim SY, J. Korean Fiber Soc., 30, 328 (1993)
  24. Ji BC, Yoon WS, Kim SY, J. Korean Fiber Soc., 30, 379 (1993)
  25. Lee JG, Park SH, Kim SH, Polym.(Korea), 34(6), 579 (2010)