화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.53, No.3, 282-288, June, 2015
에너지함유 열가소성탄성체 적용을 위한 아지드화 폴리부타디엔/에틸렌-비닐아세테이트 공중합체 블렌드 제조
Preparation of Azidated Polybutadiene(Az-PBD)/Ethylene-Vinyl Acetate Copolymer(EVA) Blends for the Application of Energetic Thermoplastic Elastomer
E-mail:
초록
에틸렌-비닐아세테이트(EVA)와 아지드화 폴리부타디엔(Az-PBD)를 블렌드 함으로써 새로운 에너지함유 열가소성탄성체를 제조하고, 이들의 미세구조 및 제반물성을 SEM, DSC, DMA, 인장실험 및 연소시험으로부터 조사하였다. Az-PBD는 1,2-비닐기를 갖는 폴리부타디엔(PBD)을 첨가반응에 의해 비닐기를 브롬화시킨 후, NaN3를 이용하여 브롬기를 아지드기(-N3)로 치환시킴으로써 제조하였다. EVA/Az-PBD 블렌드는 EVA/Az-PBD 비율이 무게비로 각각 90/10, 80/20, 70/30이 되도록 용액 블렌딩으로 제조하였다. SEM, DSC, DMA 분석 결과 이들 블렌드는 부분적으로 상용성이며, EVA가 연속상을 이루고 Az-PBD가 분산상을 이루는 미세구조를 갖는 것을 알 수 있었다. 인장실험으로부터 Az-PBD 함량이 증가될수록 인장모듈러스 및 영구신장변형율이 증가되고 파단신율이 감소되는 경향을 보였으나, 제조된 모든 블렌드들은 700% 이상의 파단신율과 5% 이하의 영구인장변형율을 나타내어, 일반적인 탄성고무소재와 같은 특 성을 나타내었다. 또한, 연소 시 Az-PBD 함량 증가함에 따라 더 큰 불꽂이 발생되어 연소 시 더 높은 에너지를 발생 시킬 수 있음을 확인할 수 있었다.
A new energetic thermoplastic elastomer based on the azidated polybutadiene(Az-PBD)/ethylene vinyl acetate copolymer (EVA) blends was prepared, and structure and properties of the blends were invetigated by SEM, DSC, DMA, tensile testing and combustion test. The Az-PBD was synthesized via a two-step process involving the addition reaction of commercially available 1,2-PBD with Br2 and subsequent nucleophilic substitution reaction of the brominated PBD with NaN3. EVA/Az-PBD with 90/10, 80/20, 70/30 (wt/wt) was prepared by a solution blending. SEM, DSC, and DMA results revealed that the blends are partially compatible and Az-PBD is dispersed in continuous EVA matrix. Tensile test showed that modulus and tension set increased while elongation-at-break of the blends decreased with increasing Az-PBD content in the blends, but all the blends showed a elongation at break as high as 700% and a tension set of less than 5%, indicating that the blends are typically elastomeric. Combustion test showed that, with increasing Az-PBD content in the blend, higher energy can be released.
  1. Hsieh WH, Peretz A, Huang IT, Kuo KK, J. Propul., 7(4), 497 (1991)
  2. Miyazaki T, Kubota N, Propel. Explos. Pyrotech, 17(1), 5 (1992)
  3. Talukder MAH, Lindsay GA, J. Polym. Sci. A: Polym. Chem., 28(9), 2393 (1990)
  4. Eroglu MS, Guven O, J. Appl. Polym. Sci., 60(9), 1361 (1996)
  5. Varma IK, Macromol. Symp., 210, 121 (2004)
  6. Eroglu MS, Guven O, Polymer, 39(5), 1173 (1998)
  7. Bui VT, Ahad E, Rheaume D, Raymond MP, J. Appl. Polym. Sci., 62(1), 27 (1996)
  8. Xue H, Gao HX, Shreeve JM, J. Polym. Sci. A: Polym. Chem., 46(7), 2414 (2008)
  9. Shin JA, Lim YG, Lee KH, Bull. Korean Chem. Soc., 32(2), 547 (2011)
  10. Manser GE, Fletcher RW, “Energetic Thermoplastic Elastomers,” Summary Report, Office of Naval Research Contract N00014-87-C-0098(1988). (1998)
  11. Diaz E, Brousseau P, Ampleman G, Prud'homme RE, PROPELLANT-EXPLOS-PYROTECH, 28(3), 101 (2003)
  12. Pisharath S, Ang HG, Polym. Degrad. Stabil., 92(7), 1365 (2007)
  13. Duo YQ, Tan HM, Chen FT, J. Appl. Polym. Sci., 83(14), 2961 (2002)
  14. Walker BM, Rader CP, “Handbook of Thermoplastic Elastomers,” 2ndEd. New York(1998). (1998)
  15. De SK, Bhowmick AK, “Thermoplastic Elastomers from Rubber-plastic Blends,” Ellis Horwood, New York(1990). (1990)
  16. Jin SH, Song GS, Lee DS, Korean Chem. Eng. Res., 50(1), 167 (2012)
  17. Choi MC, Chang YW, Noh ST, Kwon JO, Kim DK, Kwon SK, J. Korean Ind. Eng. Chem., 20(4), 375 (2009)
  18. http://www.jsr.co.jp/jsr_e/pd/tpe_rb.shtml.
  19. www.dupont.com/content/.../elvax_40l_03.pdf.
  20. Shi XM, Zhang J, Jin J, Chen SJ, eXPRESS Polym. Lett., 2(9), 623 (2008)