화학공학소재연구정보센터
Polymer(Korea), Vol.39, No.3, 365-369, May, 2015
Methylaluminoxane을 이용한 L-lactide 중합
Polymerization of L-lactide Using Methylalumionxane
E-mail:
초록
본 연구에서는 Al 화합물인 methylaluminoxane(MAO)를 이용하여 L-lactide의 벌크중합 및 용액중합을 실시하였다. 촉매 투입량에 따른 벌크중합 결과, 투입량이 증가할수록 전환율이 증가하였다. 분자량은 촉매 투입량이 0.15 mmol일 때 60800 g/mol로 가장 높은 분자량을 얻었으며 그 이상의 투입량에서는 분자량이 감소하였다. Turnover frequency(TOF)값의 경우 촉매 투입량이 0.15 mmol일 때 가장 크고 촉매 투입량이 증가할수록 감소하였다. 용액중 합에서는 30분 가량 induction time이 존재하였다. 중합 시간에 따라 3시간까지 전환율이 선형적으로 증가하였으며 6시간일 때 54700 g/mol로 가장 높은 분자량을 얻었다.
In this study, the bulk and solution polymerizations of L-lactide using an aluminium compound, methylaluminoxane (MAO), were performed. In the bulk polymerization, the conversion of polymerization was increased with increasing the amount of catalyst in feed. The largest molecular weight (Mw), 60800 g/mol, was shown at the MAO amount in feed of 0.15 mmol, and Mw was decreased above 0.15 mmol of MAO in feed. At the 0.15 mmol of MAO in feed, turn of frequency (TOF) was the highest, and it was decreased with increasing MAO amount in feed. In the solution polymerization, the induction time of 30 min was shown. The conversion of polymerization was linearly increased with the polymerization time, and the highest Mw, 54700 g/mol, was achieved at the polymerization time of 6 h.
  1. Kwun KH, Cha WS, Nah JW, Lee DB, J. Korean Ind. Eng. Chem., 12(2), 148 (2001)
  2. Kim JH, Jegal J, Song BK, Shin CH, Polym.(Korea), 35(1), 52 (2011)
  3. You YS, So KH, Chung MS, Korean J. Food Sci. Tech., 40, 365 (2008)
  4. Lasprilla AJR, Martinez GAR, Luneli BH, Jardini AL, Fiho RM, Biotechnol. Adv., 30, 321 (2012)
  5. Kim WJ, Kim JH, Kim SH, Kim YH, Polym.(Korea), 24(3), 431 (2000)
  6. Ikada Y, Tsuji H, Macromol. Rapid Commun., 21(3), 117 (2000)
  7. Nampoothiri KM, Nair NR, John RP, Bioresour. Technol., 101(22), 8493 (2010)
  8. Filachione EM, Ind. Eng. Chem., 36, 223 (1994)
  9. Albertsson AC, Varma IK, Biomacromolecules, 4(6), 1466 (2003)
  10. Drumright RE, Gruber PR, Henton DE, Adv. Mater., 12(23), 1841 (2000)
  11. Filachione EM, Ind. Eng. Chem., 36, 223 (1994)
  12. Kim YH, Kim SH, Ind. Eng. Chem., 3, 387 (1992)
  13. Aubrecht KB, Hillmyer MA, Tolman WB, Macromolecules, 35(3), 644 (2002)
  14. Kricheldorf HR, Boettcher C, Tonnes KU, Polymer, 33, 2817 (1992)
  15. Nijenhuis AJ, Grijpma DW, Pennings AJ, Macromolecules, 25, 6419 (1992)
  16. Kricheldorf HR, Boettcher C, Makromol., 194, 1653 (1993)
  17. Okuda J, Rushkin IL, Macromolecules, 26, 5530 (1993)
  18. Hayakawa M, Mitani M, Yamada T, Mukaiyama T, Macromol. Chem. Phys., 198, 1305 (1997)
  19. Chabot F, Vert M, Chapelle S, Granger P, Polymer, 24, 53 (1983)
  20. Mehta R, Kumar V, Bhunia H, Upadhyay SN, J. Macromol. Sci.-Polym. Rev, 45, 337 (2005)
  21. Noh YH, Ko YS, Polym.(Korea), 36(1), 53 (2012)
  22. Yoo JY, Kim DH, Ko YS, Polym.(Korea), 36(5), 593 (2012)
  23. Yoo JY, Ko YS, Polym.(Korea), 36(6), 693 (2012)
  24. Yoo JY, Kim Y, Ko YS, J. Ind. Eng. Chem., 19, 1137 (2012)
  25. Shin H, Macromol. Symp., 27, 97 (1995)
  26. Sudesh AK, Abe H, Doi Y, Prog. Polym. Sci, 25, 1503 (2000)
  27. Jamshidi K, Hyon SH, Ikada Y, Polymer, 29, 2229 (1988)