화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.9, No.8, 804-809, August, 1999
표면장력 제어를 이용한 실리카 박막의 제조
Preparation of Silica Films by Surface Tension Control
초록
테오스(TEOS)를 출발물질로 사용하여 건조조절제(DCCA;Dying Control Chemical Additives)를 첨가하지 않고, 솔-젤 법을 이용하여 Si(001) 단결정 기판 위에 실리카 박막을 제조하였다. 박막은 스핀 코팅 방법으로 테오스 =1 몰, 염산=0.05몰의 조건하에 메탄올, 증류수의 첨가량을 변화시키면서 젤화 완료시간, 박막의 두께, 균열 발생 여부, 박막의 결정성 등을 조사하였다. 그 결과 솔의 제화 완료시간은 메탄올 첨가량이 8몰일 때 가장 긴 640시간이었다. 코팅된 박막의 두께는 메탄올 첨가량이 많아질수록 감소하였다. 소결은 승온 속도 0.6 ? C /min으로 500 ? C 에서 1시간 행하였으며, 메탄올 첨가량이 0.8몰, 2몰일 때는 표면에서 균열이 발생하여 worm-like grain 구조를 가졌고, 메탄올 4몰인 경우에는 국부적으로 균열이 발생하였으나, 메탄올 양이 8몰 이상에서는 균열이 발생하지 않았다. 즉, 솔-젤 공정에서 균열 방지를 위해 첨가되는 건조조절제(DMF)를 첨가하지 않고도 용매인 메탄올과 증류수 혼합비를 조절, 표면장력을 제어함으로써 균열없는 박막을 제조하였다.
Silica films were prepared on Si single crystal substrates by a sol-gel process without DMF using TEOS as a starting material. Films were fabricated by spin coating technique. For films having a composition of TEOS : HCI(1:0.05mol), gelation time, the thickness of films, the formation of cracks and the microstructure of the films were investigated as a function of the molar ratio of CH 3 OHandH 2 O . With 8mol CH 3 OH , the longest gelation time was measured to be 640hr. The thickness of the coated films was decreased with increasing content of CH 3 OH . The films were sintered at 500 ? C for 1hr with a heating rate of 0.6 ? C /min. The coated films showed worm-like grains and partially cracked microstructures at an amount of CH 3 OH 2mol and 4mol. The addition of more than 8 mole of CH 2 OH resulted in crack-free silica films. This suggests that crack-free films can be fabricated by controlling the surface tension energy of the sol solutions without DMF.
  1. Bruce AJ, J. Am. Ceram. Soc., 28, 685 (1994)
  2. Jackel JL, Vogel EM, Aitchison JS, Appl. Opt., 29, 3126 (1990)
  3. Aoki T, Nishimura Y, IEICE Trans Electron., E77-C(10), 1536 (1994)
  4. Mackenzie JD, J. Non-Cryst. Solids, 100, 162 (1988)
  5. Mackenzie JD, J. Non-Crys. Solids, 48, 1 (1982)
  6. Ti G, Wu Z, Sayer M, J. Appl. Phys., 64(5), 2717 (1988)
  7. Yi G, Sayer M, Ceram. Bull, 70(7), 1173 (1991)
  8. Dkleva TW, Geoffroy GL, J. Am. Ceram. Soc., 71(5), 280 (1988)
  9. Sanchez C, Livage J, Henry M, Babonneau F, J. Non-Cryst. Solids, 100, 65 (1988)
  10. Sanderson RT, Science, 114, 670 (1951)
  11. Chen KC, Tsuchiya T, Mackenzie JD, J. Chem. Phys., 81, 227 (1986)
  12. Mackenzie JD, Science of Ceramic Process (1986)
  13. Pope EJA, Mackenzie JD, J. Non-Cryst. Solids, 87, 185 (1986)
  14. Stockmayer WH, J. Chem. Phys., 11, 45 (1943)
  15. Scherer GW, J. Non-Cryst. Solids, 100, 77 (1988)
  16. Brinker CJ, Scherer GW, Sol-Gel Science: The Physics and Chemistry of Sol-Gel processing, 407 (1990)
  17. Brinker CJ, Scherer GW, Sol-Gel Science: The Physics and Chemistry of Sol-Gel processing, 453 (1990)
  18. Pope EJA, Mackenzie JD, J. Non-Cryst. Solids, 87, 185 (1986)
  19. Klein LC, Sol-Gel Optics: Processing and Applications/ Kluwer Academic Publisher, 147 (1994)
  20. Adachi T, Sakka S, J. Non-Cryst. Solids, 99, 118 (1988)
  21. Weast RC, Handbook of Chemistry and Physics, F34 (1987)