화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.32, No.5, 852-859, May, 2015
Mesoporous silica with monodispersed pores synthesized from the controlled self-assembly of silica nanoparticles
E-mail:,
Silica nanoparticles with different sizes (ranging from 10 nm to 104 nm) and size distributions were synthesized by semi-batch and semi-batch/batch methods of the Stober process. Then the amorphous silica with different surface areas (ranging from 30m2/g to 400m2/g) and pores (ranging from 3 nm to 33 nm) were obtained by various aging treatments and drying methods of the synthesized colloidal silica sol. The aging treatment resulted in the monodispersed pore distribution and decreased BET surface area of silica. The high-humidity drying method led to the mesoporous silica with uniform pores and decreased small pores. As the silica was obtained by the arrangement of silica nanoparticles, the pore diameter and pore distribution of mesoporous silica were directly related to the size and distribution of nanoparticles. Furthermore, this study offered a new thought for the synthesis of other mesoporous materials with uniform pore distributions.
  1. Hrubesh LW, Coronado PR, Satcher JH, J. Non-Cryst. Solids, 285, 328 (2001)
  2. Morris CA, Anderson ML, Stroud RM, Merzbacher CI, Rolison DR, Science, 284(5414), 622 (1999)
  3. Smirnova I, Suttiruengwong S, Arlt W, J. Non-Cryst. Solids, 350, 54 (2004)
  4. Stober W, Fink A, Bohn E, J. Colloid Interface Sci., 26, 62 (1968)
  5. Huang Y, Pemberton JE, Colloids Surf., A, 377, 76 (2011)
  6. Lei ZB, Xiao Y, Dang LQ, Lu M, You WS, Micropor. Mesopor. Mater., 96, 127 (2006)
  7. Lindberg R, Sjoblom J, Sundholm G, Colloids Surf., A, 99, 79 (1995)
  8. Scott Fogler H, Elements of Chemical Reaction Engineering, Prentice-Hall of India (2004)
  9. Kim KD, Kim HT, J. Sol-Gel Sci. Technol., 25, 183 (2002)
  10. Hartlen KD, Athanasopoulos APT, Kitaev V, Langmuir, 24(5), 1714 (2008)
  11. Watanabe R, Yokoi T, Kobayashi E, Otsuka Y, Shimojima A, Okubo T, Tatsumi T, J. Colloid Interface Sci., 360(1), 1 (2011)
  12. Tang JW, Zhou XF, Zhao DY, Lu GQ, Zou J, Yu CZ, J. Am. Chem. Soc., 129(29), 9044 (2007)
  13. Kuroda Y, Yamauchi Y, Kuroda K, Chem. Commun., 46, 1827 (2010)
  14. Johnson SA, Ollivier PJ, Mallouk TE, Science, 283(5404), 963 (1999)
  15. Nozawa K, Gailhanou H, Raison L, Panizza P, Ushiki H, Sellier E, Delville JP, Delville MH, Langmuir, 21(4), 1516 (2005)
  16. Bogush GH, Zukoski CF, J. Colloid Interface Sci., 142, 1 (1991)
  17. LaMer VK, Dinegar RH, J. Am. Chem. Soc., 72, 4847 (1950)
  18. Green DL, Lin JS, Lam YF, Hu MZC, Schaefer DW, Harris MT, J. Colloid Interface Sci., 266(2), 346 (2003)
  19. Matsoukas T, Gulari E, J. Colloid Interface Sci., 124, 252 (1988)
  20. Brinker CJ, Scherer GW, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, Academic Press, Boston (1990)
  21. Kurumada KI, Nakabayashi H, Murataki T, Tanigaki M, Colloids Surf., A, 139, 163 (1998)
  22. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T, Pure Appl. Chem., 57, 603 (1985)
  23. Lee S, Cho IS, Lee JH, Kim DH, Kim DW, Kim JY, Shin H, Lee JK, Jung HS, Park NG, Kim K, Ko MJ, Hong KS, Chem. Mater., 22, 1958 (2010)
  24. Wang JZ, Sugawara-Narutaki A, Fukao M, Yokoi T, Shimojima A, Okubo T, ACS Appl. Mater. Interfaces, 3, 1538 (2011)
  25. Wang C, Zhang YH, Dong L, Fu LM, Bai YB, Li TJ, Xu JG, Wei Y, Chem. Mater., 12, 3662 (2000)
  26. Micheletto R, Fukuda H, Ohtsu M, Langmuir, 11(9), 3333 (1995)
  27. Huang Y, Pemberton JE, Colloids Surf., A, 360, 175 (2010)