화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.9, No.11, 1055-1061, November, 1999
Indium Tin Oxide (ITO) 투광성 박막의 제조 및 전자파 차폐특성
Fabrication of Indium Tin Oxide (ITO) Transparent Thin Films and Their Microwave Shielding Properties
초록
투명차폐재를 목적으로 Indium Tin Oxide (ITO) 투광성 박막을 제조하고 전자파 차폐특성에 대해 조사하였다. 박막은 RF magnetron co-sputtering 증착장비를 사용하여 제작하였다. RF 인가전력, Ar 및 O 2 분압, 기판온도를 변화시키며 전기전도도와 투광성을 겸비한 박막의 조성과 구조에 관한 실험을 진행하였다. 최적의 증착조건은 300 ? C 의 기판온도, 20sccm의 아르곤 유량, 10sccm의 산소유량, 그리고 In과 Sn의 인가전력이 각각 50W와 30W일 경우였으며, 이때 얻어진 박막은 육안으로 분명할 정도의 투광성을 보였고 5.6 ×10 4 mho/m의 높은 전기전도도를 나타내었다. 이렇게 제조된 ITO 박막의 전자파 차폐효과를 차폐이론에 의해 분석하였다. 박막의 전기전도도, 두께, skin depth로부터 차폐기구(흡수손실, 반사손실, 다중반사 보정항)에 대해 고찰하였다. 계산된 차폐효과는 26dB의 값을 보여 투광성 차폐재로 ITO 박막의 사용 가능성을 제시할 수 있었다.
m Tin Oxide (ITO) films were fabricated by vacuum deposition technique and their microwave shielding properties were investigated for the application to the transparent shield material. The vacuum coating was conducted in a RF co-sputtering machine. The film composition and structure associated with the sputtering conditions (argon and oxygen pressure. substrate temperature. RF input power) were investigated for the attainment of high electrical conductivity and good transparency. The electrical conductivity of IT0 films fabricated under the optimum deposition conditions (substrate temperature : 300 ? C . Ar flow rate : 20 sccm, Oxygen flow rate : 10 sccm, In/Sn input power : 50/30 W) showed 5.6 ×10 4 mho/m. The optical transparency is also considerably good. The microwave shielding properties including the dominant shielding mechanism are investigated from the electrical conductivity, thickness and skin depth of the ITO films. The total shielding effectiveness is then estimated to be 26 dB, which provides a suggestion that the IT0 films can be effectively used as the transparent shield material.
  1. 淸水康敬, 電磁波の吸收と遮蔽, ニチデン, 1 (1989)
  2. White DRJ, Mardiguian M, Electromagnetic Shielding, 3 (1988)
  3. Ohki Y, Yasufuku S, IEEE Electrical Insulation Magazine, 6(5), 65 (1990)
  4. Lim HN, Lee YK, Park JW, Korean J. Mater. Res., 6(6), 618 (1996)
  5. 森本辛彦, 表面處理による導電性プラスチックの開發, 81 (1983)
  6. Meng LJ, Dossantos MP, Thin Solid Films, 303(1-2), 151 (1997)
  7. Badeker K, Ann. Pys., 22, 749 (1907)
  8. Scharff W, Hammer K, High Performance Ceramic Films and Coatings, 691 (1991)
  9. Chopra KL, Major S, Pandya DK, Thin Solid Films, 1 (1983)
  10. Yasui H, Tsuda Y, Mech. Soc., 593 (1993)
  11. Manifacier JC, Szepessy L, J. Electrochem. Soc. (1977)
  12. Takaki S, Matsumoto K, Suzuki K, Appl. Surf. Sci., 919 (1988)
  13. Hjortsberg A, Hambeg I, Granqvist CG, Thin Solid Films, 90, 323 (1982)
  14. Schelkunoff SA, Electromagnetic Waves (1943)
  15. Fan JCC, Bachner FJ, J. Electrochem. Soc., Dec, 1719 (1975)
  16. Lasitter HA, IEEE Trans. EMC, 6, 17 (1964)