화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.10, No.7, 499-504, July, 2000
기계적합금화법을 이용한 고온 고강도 Al-Nb-Zr 합금 제조 및 특성 평가
Elevation of Properties of Al-Nb-Ar alloys Fabricated by Mechanical Alloying Metho
초록
최근에 고온용 항공기 구조 재료로 Ti, Zr, V, Nb 및 Ta 등의 천이금속을 첨가한 Al 합금계 제조와 특성에 관한 연구가 되어져 왔다. 본 연구에서는 Al-Nb합금에 Zr을 첨가하여 상형성거동을 연구하였다. Al-1.3at.%(Nb+Zr) 합금에서 Nb와 Zr의 원자비를 1:3, 1:1 및 3:1로 하여 기계적합금화하였다. 기계적합금화하는 동안 Al-Nb-Zr의 형태변화와 미세구조를 SEM, XRD 및 TEM으로 관찰하였다. X-선 회절 시험에 의하여 Nb 2 Al 과 Al 3 Zr 4 가 생성됨을 확인하였다. 500 ? C 에서 1시간동안의 진공열처리에 의하여 Al 3 Zr , Al 3 Zr 4 등의 금속간화합물을 형성하였다. 30시간동안 기계적 합금화한 분말을 열처리하여 TEM으로 관찰한 결과 100nm 이하의 금속간화합물 입자들을 관찰하였다.
Recently there have been many investigations on the synthesis and properties of transition metal trialuminides based on Ti, Zr, V, Nb and Ta for use aircraft structure materials in an elevated environment. The effect of Zr additions on the formation behaviour of Al-Nb alloy was investigated. Al-1.3at.%(Nb+Zr) alloys with different Nb to Zr atomic 1:3, 1:1 and 3:1 were prepared by mechanical alloying(MA). The morphological changes and microstructural evolution of Al-Nb-Zr powders during MA were investigated by SEM, XRD and TEM. The intermetallic compound phase of Nb 2 AlandAl 3 Zr 4 was identified by X-ray diffraction. The intemetallic compound of Al 3 Zr,Al 3 Nb and Al 3 Zr 4 were formed by heat treatment for 1 hour at 500 ? C . The size of intermetallic compounds observed by TEM were approximately below 100nm, when they were heat treated after mechanically alloying for 30 hours.
  1. Weaver A, Metal Powder Report, 44, 175 (1989)
  2. Froes FH, Metal Powder Report, 44, 94 (1989)
  3. Angers L, Fine ME, Weertman JR, Metall. Trans. A, 18, 555 (1987)
  4. Kumar K, Inter. Mater. Rev., 35, 293 (1990)
  5. Kawanish S, Isonish K, Okazani K, Materials Transaction, 34, 43 (1993)
  6. Huang B, Tokijane N, Ishuhara KN, Shingu PH, Nasu S, J. Non-Cryst. Solids, 117-118, 688 (1990)
  7. Peng Z, Suryanarayana C, Froes F, Scripta Met., 72, 475 (1992)
  8. 김현재, 최성배, 권숙인, 대한금속학회지, 36(9), 1423 (1998)
  9. Yang HU, Lee KM, Metals. Materials, 5, 171 (1999)
  10. Ahn IS, Jung KC, KIm SS, Kim YY, Metals. Materials, 5, 621 (1999)
  11. Beghi G, Matera R, Pratti GF, J. Nuclear Mat., 26, 219 (1968)
  12. Beghi G, Matera R, Pratti GF, J. Nuclear Mat., 31, 259 (1969)
  13. Massalski TB, Binary Alloy Phase Diagrams, 147 (1986)
  14. Anton DL, Shah DM, Duhl DN, Gianmei AF, J. Met., 41, 12 (1989)
  15. Ray R, Metal Powder Rep., 46, 24 (1991)
  16. Benjamin JS, Volin JE, Metall. Trans., 5, 1929 (1974)
  17. Froes FH, J. Met., 41, 25 (1989)
  18. Benjamin JS, Metal Powder Report, 45, 122 (1990)
  19. Yokota M, Ohata M, Mitani H, J. Jpn. Inst. Metals, 44(19), 1 (1980)
  20. Ahn JH, Chung HS, Watanabe R, Park YH, Mat. Sci. Forum, 88, 347 (1992)
  21. Lee JS, Kwun SI, J. Kor. Inst. Met. Mater., 34, 433 (1996)
  22. Sall B, et al,.Lee EW(ed.), Chia EH(ed.), KIm NJ(ed.), Light-Weight Alloys for Aerospace Applications, 3 (1989)
  23. Lee CH, Fukunaga T, Yamada Y, Okamoto H, Mizutani U, J. Phase Equilibria, 14, 167 (1993)
  24. Cullity BD, Elements of X-ray Diffraction (2nd ed.)/ Addison-Wesley Pub. Co. Inc., pp.281, 1978 (1978)
  25. Hawk JA, Angers LM, Wilsdorf HGF, Dispersion strengthened Aluminium Alloys, 337 (1988)
  26. Stoloff NS, Metall. Trans. A, 24, 561 (1993)