Korean Journal of Materials Research, Vol.10, No.10, 698-702, October, 2000
표면 광전압 방법에 의한 Al 0.24 Ga 0.76 As/GaAs 다중 양자우물 구조의 광 흡수 특성
Characteristics of Optical Absorption in Al 0.24 Ga 0.76 As/GaAs Multi-Quantum Wells by a Surface Photovoltage Method
초록
Al 0.24 Ga 0.76 As/GaAs 다중 양자우물 구조의 고아 흡수 특성을 표면 광전압 방법을 사용하여 연구하였다. SPV 측정결과 1.42eV 부근에서 두 개의 신호가 나탔으며, 이는 화학적 에칭으로 GaAs 기판의 신호와 GaAs 완충층과 관련된 신호임을 확인 할 수 있었다. Al 0.24 Ga 0.76 As 와 관련된 전이 에너지를 관찰하고, Kuech 등이 제안한 조성식을 이용하여 Al 조성(x=24%)을 결정하였다. 그리고 다중 양자우물에서 나타나는 전이 에너지 값들은 envelope-weve function approximation(EFA)로 계산한 이론치와 잘 일치하였다. 입사광의 세기에 따라 광 전압이 선형적으로 변한다는 것을 알 수 있었고, 온도가 감소함에 따른 전이 에너지의 변화를 관찰하였다.
The characteristics of optical absorption in Al 0.24 Ga 0.76 As/GaAs multi-quantum wells(MQWs) structure were investigated by using the surface photovoltage(SPV). The Spy features near 1.42 eV showed two overlapping signals. By chemical etching, we found associated with the GaAs substrate and the GaAs cap layer. The Al composition(x=24 %) was determined by Kuech's composition formula. In order to identify the transition energies. the experimentally observed energies were compared with results of the envelope function approximation for a rectangular quantum wells An amplitude variation of the relative Spy intensity from the GaAs substrate, llH, and llL was observed at different light intensities. A variation in the SPY line shape of the transition energies were observed with decreasing temperat ture.
- Chang WT, Appl. Phys. Lett., 39, 786 (1981)
- Dingle R, Stormer HL, Gossard AC, Wiegmann W, Appl. Phys. Lett., 33, 665 (1978)
- Okamoto H, Jpn. J. Appl. Phys., 26, 315 (1987)
- Iwamura H, Kobataski H, Okamoto H, Jpn. J. Appl. Phys., 23, L795 (1984)
- Yu PW, Sanders GD, Reynolds DC, Phys. Rev. B, 32, 9250 (1987)
- Anedda A, Casu MB, Serpi A, J. Appl. Phys., 79, 6995 (1996)
- Hua BY, Fortin E, Roth AP, Appl. Phys. Lett., 53, 1062 (1988)
- Moller RC, Gossard AC, Sanders GD, Chang YC, Schulman JN, Phys. Rev. B, 32, 8452 (1985)
- Dawson P, Moore KJ, Duggan G, Ralph HI, Foxon CTB, Phys. Rev. B, 34, 6007 (1986)
- Zucker JE, Pinczuk A, Chemla DS, Gossard AC, Wiegman W, Phys. Rev. Lett., 51, 1293 (1983)
- Aigouy L, Pollak FH, Petruzzello J, Shahzad K, Solid State Commun., 102, 877 (1997)
- Liu W, Jiang D, Zhang Y, J. Appl. Phys., 77, 4564 (1995)
- Gal D, Mastai Y, Hodes, J. Appl. Phys., 86, 5573 (1999)
- Ashkenasy N, Leibovitch M, Rosenwaks Y, Shapira Y, J. Appl. Phys., 86, 6902 (1999)
- Kuech TF, Wolford DJ, Poremski R, Bradley JA, Kelleher KH, Appl. Phys. Lett., 51, 505 (1987)
- Bastard G, Phys. Rev. B, 24, 5693 (1981)
- Adachi S, J. Appl. Phys., 58, R1 (1985)
- Miller DAB, Chemla DS, Damen TC, Gossard AC, Wiegmann W, Wood TH, Burrus CA, Phys. Rev. Lett., 53, 2173 (1984)
- Shanabrook BV, Glembocki OJ, Broide DA, Phys. Rev. B, 39, 3411 (1989)
- Miller DAB, Chemla DS, Gossard AC, Wiegmann W, Wood TH, Burrus CA, Phys. Rev. B, 32, 1043 (1985)
- Pankove JI, Optical Processes in Semiconductors/ Dover, pp.39, 1992 (1992)
- Lautenschlager P, Garriga M, Logthetidis S, Cardona M, Phys. Rev. B, 35, 9174 (1987)
- Shen H, Pan SH, Hang Z, Leng J, Pollak FH, Appl. Phys. Lett., 53, 1080 (1988)