화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.11, No.4, 283-289, April, 2001
박막 고체산화물 연료전지용 이트리아 안정화 지르코니아 전해질 연마표면상의 공기극 성능
Performance of Air Electrodes with a Surface-Polished Yttria-Stabilized Zircona Electrolyte for Thin-Film Solid Oxide Fuel Cells
초록
50/50 vol% LSM-YSZ (La 1?x Sr x MnO 3 -yttria stabilized zirconia)의 복합공기극이 콜로이드 증착법에 의해 연마된 YSZ 전해질상에 증착되었다. 그 전극 특성은 주사전자현미경, X선회절과 임피던스 분석기에 의해 연구되어졌다. 90 0 ? C 에서 공기/LSM -YSZ/YSZ/Pt/공기 셀에 대해 측정된 전형적인 임피던스 스펙트럼들은 2개의 불완전한 호(depressed arc)로 구성되었다. LSM 전극에 대한 YSZ의 첨가는 전극내의 삼상계(TPB) 영역을 증가시켰으며, 이것이 LSM-YSZ 복합공기극의 비저항을 감소시켰다. 또한 전해질 표면의 불순물 제거와 TPB 길이의 증가를 위한 전해질 표면연마는 공기극의 비저항을 훨씬 더 감소시켰다. LSM-YSZ 공기극의 비저항은 작동온도, 공기극의 조성과 입자크기, 인가전류 및 전해질의 표면거칠기에 의해 큰 영향을 받았다.
Composite cathodes of 50/50 vol% LSM- YSZ (La 1?x Sr x MnO 3 -yttria stabilized zirconia) were deposited onto surface- Polished YSZ electrolytes by colloidal deposition technique. The cathode characteristics were then examined by scanning electron microscopy (SEM) and X-ray diffraction (XRD) and studied by ac impedance spectroscopy (IS). The typical impedance spectra measured for an air/LSM- YSZ/YSZ/Pt/air cell at 700 ? C were composed of two depressed arcs. Addition of YSZ to the LSM electrode significantly enlarged the triple-phase boundaries (TPB) length inside the electrode, which led to a pronounced decrease in cathodic resistivity of LSM-YSZ composite electrodes. Polishing the electrolyte surface to eliminate the influences of surface impurities and to enlarge the TPB length can further reduce cathode resistivity. The cathodic resistivity of the LSM- YSZ electrodes was a strong function of operation temperature, composition and particle size of cathode materials, applied current, and electrolyte surface roughness.
  1. Honeger K, Batawi E, Sprecher C, Diethelm R, Proceedings 5th Intern. Symp. SOFC, Archen, Germany, June 1997, Stimming U, Singhal SC, Tagawa H, Lehnert W eds., p.321, The Electrochemical Society, Inc., Pennington, NJ
  2. Aizawa M, Kuroishi M, Ueno A, Tajiri H, Nakayama T, Eguchi K, Arai H, ibid., 330
  3. Tsai T, Barnett SA, ibid., 368
  4. Juhl M, Primdahl S, Manon C, Mogensen M, J. Power Sources, 61, 173 (1996)
  5. Sasaki K, Wurth JP, Gschwend R, Godickemeier M, Gauckler LJ, J. Electrochem. Soc., 143(2), 530 (1996)
  6. Kenjo T, Nishiya M, Solid State Ionics, 57, 295 (1992)
  7. Boukamp BA, ibid., 20, 31 (1986)
  8. Wang SZ, Jiang Y, Zhang YH, Yan JW, Li WZ, J. Electrochem. Soc., 145(6), 1932 (1998)
  9. Chick LA, Pederson LR, Maupin GD, Bates JL, Thomas LE, Exarhos GJ, Mat. Lett., 10(1-2), 6 (1990)
  10. Goodenough JB, Progress in Solid State Chemistry, Vol. 5, Reiss H, ed., p.145, Pergamon Press, Ltd., Oxford (1971) (1971)
  11. Kuo JH, Anderson HU, Sparlin DM, J. Solid State Chem., 87, 55 (1990)
  12. van Roosmalen JAM, Huijsmans JPP, Plomp L, Solid State Ionics, 66, 279 (1993)
  13. Hahn A, Landes H, Proceedings 5th Intern. Symp. SOFC, Archen, Germany, June 1997, U. Stimming, S. C. Singhal, H. Tagawa, W. Lehnert eds., p.595, The Electrochemical Society, Inc., Pennington, NJ
  14. Shibuya Y, Nagamoto H, ibid., 510
  15. Ioroi T, Hara T, Uchimoto Y, Ogumi Z, Takehara Z, J. Electrochem. Soc., 145(6), 1999 (1999)
  16. Siebert E, Hammouche A, Kleitz M, Electrochim. Acta, 40(11), 1741 (1995)
  17. Fukunaga H, Ihara M, Sakaki K, Yamada K, Solid State Ion., 86-88, 1179 (1996)
  18. Vanheuveln FH, Bouwmeester HJ, Vanberkel FP, J. Electrochem. Soc., 144(1), 126 (1997)
  19. Tsai TP, Barnett SA, J. Electrochem. Soc., 145(5), 1696 (1998)
  20. Bae JM, Steele BCH, Solid State Ion., 106(3-4), 247 (1998)
  21. Lee YK, Kim JY, Lee YK, Park DK, Cho BR, Park JW, Visco SJ, Kor. J. Mat. Res., 9(11), 1075 (1999)