화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.11, No.5, 378-384, May, 2001
나노구조 Fe-Co 연자성 합금의 제조를 위한 PECS 공정 연구
PECS Process for Fabrication of Nanostructured Fe-Co Softmagnetic Alloy
초록
본 연구에서는 기계적 합금화 공정을 통하여 평균 10nm의 크기를 가지는 결정립으로 이루어지는 나노구조 Fe-Co 합금분말을 제조하였으며 제조된 합금분말을 PECS 공정으로 소결하여 벌크의 나노구조 Fe-Co 연자성 합금을 제조하고자 하였다. PECS 공정은 소결온도를 700, 800, 900과 100 0 ? C 로 변화시키고 유지시간을 0에서 16분가지 변화시켜주며 수행하였다. PECS 공정의 나노구조 소결체 제조에 관한 효율성을 평가하였으며 소결온도와 유지시간의 변화에 따른 소결밀도와 미세구조의 변화를 관찰하여 최적의 소결조건을 찾고자하였다. 또한 각 소결조건에서 제조된 소결체들의 보자력과 포화자화값을 측정하여 자성특성을 평가하였다.
In this study, nanostructured Fe-Ce powder with grain size of 10nm was produced by MA (mechanical alloying) process and was consolidated by PECS (pulse electric current sintering) process for the fabrication of bulk nanostructured Fe-Co softmagnetic alloy. PECS process was performed at 700, 800, 900 and 1 000?C with holding time ranging from 0 to 15min. The effectiveness of PECS Process to Produce nanostructured bulk specimens was estimated. The optimal PECS process condition for nanostructured Fe-Co powders was found through observing the change of relative density and microstructure with sintering temperature and holding time. The magnetic properties of the sintered specimens were evaluated through the measurement of coercivity and saturation magnetization.
  1. Siegel RW, Fouger GE, Nanostruct. Mater., 6, 205 (1995)
  2. Suryanarayana C, J. Korean. Powder. Metall Inst., 3, 233 (1996)
  3. Birringer R, Mater. Sci. Eng. A, 117, 33 (1989)
  4. Eastman J, Siegel RW, Res. Dev., 31, 56 (1989)
  5. GLEITER H, Prog. Mater. Sci., 33(4), 223 (1989)
  6. Lesile-Pelecky DL, Rieke RD, Chem. Mater., 8, 1770 (1996)
  7. Cullity BD, Introduction to Magnetic Materials, Addison- Wesley Publishing Company, USA, (1972) (1972)
  8. Stoner EC, Wohlfarth EP, Proc. Phys. Soc., 240, 599 (1948)
  9. Kurti N, Selected Works of Louis Neel, Gordon and Break Science Publishers, New York, USA, (1988) (1988)
  10. Herzer G, J. Mag. Mag. Mater., 112, 258 (1992)
  11. Herzer G, J. Mag. Mag. Mater., 157-158, 133 (1996)
  12. Alben R, Becker JJ, Chi MC, J. Appl. Phys., 4, 1653 (1978)
  13. Conder RJ, Ponto CB, Morquis PM, Nanostruct. Mater., 1, 333 (1992)
  14. Fecht HJ, Nanostruct. Mater., 6, 33 (1995)
  15. Benjamin JS, Volin TE, Metall. Trans. A, 24, 647 (1993)
  16. Koch CC, Calvin OB, Mckamey CG, Scarbrough JO, Appl. Phys. Lett., 43, 1017 (1983)
  17. Gaffet E, Alxlellaoui M, Malhouroux-Gaffet N, Mater. Trans., 36, 198 (1995)
  18. Suryanarayana C, Met. Mater., 2, 195 (1996)
  19. Bruning R, Samwer K, J. Appl. Phys., 72, 2978 (1992)
  20. Gao L, Wang HZ, Hong JS, Miyamoto H, Miyamoto K, Nishikawa Y, Torre SDDL, J. Euro. Ceram. Soc., 19, 609 (1999)
  21. Perera DS, Tokita M, Moricca S, J. Euro. Ceram. Soc., 18, 401 (1998)
  22. Kojima A, Makino A, Inoue A, IEEE Trans. Mag., 33, 3817 (1997)
  23. Liuand ZG, Urnernoto M, J. Mater. Res., 14, 2540 (1999)
  24. 강지훈, 박사학위논문, 울산대학교 (1999) (1999)
  25. Kim YD, Chung JY, Kim JY, Jean H, J. Mater. Sci. Eng. A, 291, 17 (2000)
  26. 정진열, 권영순, 석명진, 김영도, 한국분말야금학회지, 6, 27 (1999)
  27. Cullity BD, Elements of X-ray Diffraction, 2nd ed., pp.356, Addison-Wesley Publishing Company, USA, (1978) (1978)