화학공학소재연구정보센터
Minerals Engineering, Vol.22, No.4, 395-401, 2009
Flotation of mixed copper oxide and sulphide minerals with xanthate and hydroxamate collectors
Sherwood Copper's Minto Mine processes a high grade copper-gold deposit in Yukon, Canada. The ore mined is from a primary copper sulphide deposit with separate additional deposits of copper oxides. In conjunction with Ausmelt Chemicals, Minto is currently investigating options to recover copper oxide and sulphide minerals using flotation by blending their primary sulphide ore with oxide ores. The blend used in this laboratory scale investigation was 70% sulphide ore and 30% oxide ore on a weight basis. The copper sulphides present in the blend were bornite and chalcopyrite, while the oxides were malachite and minor azurite. From previous flotation investigations of mixed copper oxide and sulphide minerals using xanthate and hydroxamate collectors it was hard to distinguish the impact of the alkyl hydroxamate collector on sulphide recovery as the sulphide and oxide minerals occurred naturally together. In the case of the Minto operation the copper oxide and sulphide minerals occur in separate ore deposits and can be treated separately or blended together. This investigation has shown that using n-octyl hydroxamates (AM28 made by Ausmelt Limited) in conjunction with traditional sulphide collectors can successfully simultaneously recover copper sulphides and oxides by flotation from blended ore minerals. The copper sulphide recovery did not decrease when processing the blended ore compared to treating the sulphide ore independently. At a blend of 70% sulphide ore and 30% oxide ore, the rougher scavenger copper recovery was as high as 95.5%. The copper recovery from the blended ore using a mixture of collectors was shown to be superior to the recovery obtained using only xanthate after controlled potential sulphidisation. (C) 2008 Elsevier Ltd. All rights reserved.