Nature, Vol.516, No.7530, 238-238, 2014
Cell differentiation and germ-soma separation in Ediacaran animal embryo-like fossils
Phosphorites of the Ediacaran Doushantuo Formation (similar to 600 million years old) yield spheroidal microfossils with a palintomic cell cleavage pattern(1,2). These fossils have been variously interpreted as sulphur-oxidizing bacteria(3), unicellular protists(4), mesomycetozoean-like holozoans(5), green algae akin to Volvox(6,7), and blastula embryos of early metazoans(1,2,8-10) or bilaterian animals(11,12). However, their complete life cycle is unknown and it is uncertain whether they had a cellularly differentiated ontogenetic stage, making it difficult to test their various phylogenetic interpretations. Here we describe new spheroidal fossils from black phosphorites of the Doushantuo Formation that have been overlooked in previous studies. These fossils represent later developmental stages of previously published blastula-like fossils, and they show evidence for cell differentiation, germ-soma separation, and programmed cell death. Their complex multicellularity is inconsistent with a phylogenetic affinity with bacteria, unicellular protists, or mesomycetozoean-like holozoans. Available evidence also indicates that the Doushantuo fossils are unlikely crown-group animals or volvocine green algae. We conclude that an affinity with cellularly differentiated multicellular eukaryotes, including stem-group animals or algae, is likely but more data are needed to constrain further the exact phylogenetic affinity of the Doushantuo fossils.