화학공학소재연구정보센터
Materials Chemistry and Physics, Vol.148, No.3, 1124-1130, 2014
Synthesis of silver nanoparticles: Effects of anionic ligands on formation and catalytic activity
We report a facile method to synthesize water soluble Ag nanoparticles (NPs) using various anionic complexing ligands as reducing as well as stabilizing agents. The formation of the particles depends on the initial molar ratio of ligands to silver nitrate. Also, the alkaline condition of preparative solution is found to be necessary for the formation of Ag NPs. It has been important to mention here that the temperature of the reaction mixture plays an important factor on the rate of formation of the particles. The particles were characterized by UV-vis spectroscopy, transmission electron microscopy, dynamic light scattering and X-ray diffraction techniques. The formed particles were found to be stable for more than a month. Zeta potential measurements suggest that the negative potential created by the adsorbed complexing ligands contribute to the stability of the Ag NPs suspensions. The effect of the ligands on the formation, stability and catalytic activity of the Ag NPs was evaluated. The obtained Ag NPs exhibit a good catalytic activity toward reduction of o-nitroaniline. The results reveal that the presence of more coordination sites in the ligands affects the catalytic activity of the particles. (C) 2014 Elsevier B.V. All rights reserved.