화학공학소재연구정보센터
Langmuir, Vol.30, No.50, 15253-15260, 2014
Tunable Aggregation by Competing Biomolecular Interactions
Measurements and models are reported for Concanavalin A (ConA) mediated aggregation of dextran coated colloids that is tunable via a competing ConA-glucose interaction. Video and confocal scanning laser microscopy were used to characterize ConA adsorption to dextran colloids and quasi-2D dextran coated colloid aggregation kinetics vs [ConA] and [glucose]. ConA adsorption to, and aggregation rates of, dextran coated colloids increased from negligible values to high coverage and rapid rates for increasing [ConA] in the range 0.1-10 mM and decreasing [glucose] in the range 1-100 mM, consistent with dissociation constant estimates. Analysis of colloidal aggregation kinetics indicates ConA bridge formation is the rate-limiting step controlling the transition from slow to rapid aggregation. Our findings reveal a mechanism for tuning colloidal interactions and aggregation kinetics through specific, competitive biomolecular interactions, which lends insights into aggregation phenomena in mixed synthetic-biomaterial and biological systems.