Langmuir, Vol.30, No.43, 12986-12995, 2014
Integrated Compositional and Nanomechanical Analysis of a Polyurethane Surface Modified with a Fluorous Oxetane Siliceous-Network Hybrid
Investigating the surface characteristics of heterogeneous polymer systems is important for understanding how to better tailor surfaces and engineering specific reactions and desirable properties. Here we report on the surface properties for a blend consisting of a major component, a linear polyurethane or thermoplastic elastomer (TPU), and a minor component that is a hybrid network. The hybrid network consists of a fluorous polyoxetane soft block and a hydrolysis/condensation inorganic (HyCoin) network. Phase separation during coating formation results in surface concentration of the minor fluorous hybrid domain. The TPU is H12MDI/BD(50)-PTMO-1000 derived from bis(cyclohexylmethylene)-diisocyanate and butane diol (50 wt %) and poly(tetramethylene oxide). Surface modification results from a novel network-forming hybrid composed of poly(trifluoroethoxymethyl-methyl oxetane) diol) (3F) as the fluorous moiety end-capped with 3-isocyanatopropylriethoxysilane and bis(triethoxysilyl)ethane (BTESE) as a siliceous stabilizer. We use an integrated approach that combines elemental analysis of the near surface via X-ray photoelectron microscopy with surface mapping using atomic force microscopy that presents topographical and phase imaging along with nanomechanical properties. Overall, this versatile, high-resolution approach enabled unique insight into surface composition and morphology that led to a model of heterogeneous surfaces containing a range of constituents and properties.