화학공학소재연구정보센터
Journal of the Electrochemical Society, Vol.162, No.4, A727-A736, 2015
Thin-Film Calorimetry: Analytical Tool for In-Situ Characterization of Lithium Ion Batteries
Thin-Film Calorimetry (TFC) as presented in this work is a novel analytical tool to determine phase transformation temperatures and enthalpies of thin films and thin-film sequences. The key component is a high-temperature stable piezoelectric langasite (La3Ga5SiO14) resonator serving as a highly sensitive planar temperature sensor. Deviations in its frequency are related to temperature fluctuations caused by phase transformations and used to calculate the related enthalpies. Temperature ramps from room temperature up to 1000 degrees C are applied to perform calorimetric thin-film investigations. Thereby, the atmosphere can be controlled. To the best of our knowledge, the presented TFC is the only existing technique combining the aspects "thin films" and "high-temperature calorimetry." The first part of this article describes the newly developed TFC system. The second part presents TFC investigations on lithium manganese oxide (LMO) thin films. Measurements are carried out in ambient air and in 0.5 % H-2/Ar. In air three phase transformations appear (at 330, 410 and 600 degrees C) while in 0.5 % H-2/Ar four phase transformations are observed (at 389, 471, 730 and 758 degrees C). Their progression and related enthalpies are discussed. To determine the associated crystallographic phases, X-ray diffraction and Raman spectroscopy are performed. (C) The Author(s) 2015. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives 4.0 License (CC BY-NC-ND, http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reuse, distribution, and reproduction in any medium, provided the original work is not changed in any way and is properly cited. For permission for commercial reuse, please email: [email protected]. All rights reserved.