화학공학소재연구정보센터
Journal of the Electrochemical Society, Vol.161, No.12, E173-E181, 2014
Determination of Hydrogen Diffusion Parameters of Ferritic Steel from Electrochemical Permeation Measurement under Tensile Loads
The hydrogen permeation experiment, performed with a stepwise permeation sequence involving "1st permeation-desorption-2nd permeation under loading, demonstrates that fine blister cracks are frequently observed on the steel surface in hydrogen charging side after the 2nd permeation under the load over 95% of yield strength of the steel. To accommodate the experimental phenomena under the loading conditions, a numerical model is developed for determination of hydrogen diffusion parameters of the sour-resistant ferritic steel evaluated under tensile stress in plastic ranges. To solve the modified diffusion equation, a numerical finite difference method (FDM) is employed. The diffusion parameters determined by curve-fitting with the newly proposed diffusion equation indicates that, with the transition of mechanical domain from local-plasticity to generalized-plasticity, a big increase in the crack formation rate and hydrogen capture rate per irreversible trap are observed. It suggests that the transition probability for hydrogen transport from interstitial lattice site to irreversible trap site increases with the stress level. (C) The Author(s) 2014. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. All rights reserved.