화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.137, No.6, 2223-2226, 2015
Mimic of the Green Fluorescent Protein beta-Barrel: Photophysics and Dynamics of Confined Chromophores Defined by a Rigid Porous Scaffold
Chromophores with a benzylidene imidazolidinone core define the emission profile of commonly used biomarkers such as the green fluorescent protein (GFP) and its analogues. In this communication, artificially engineered porous scaffolds have been shown to mimic the protein beta-barrel structure, maintaining green fluorescence response and conformational rigidity of GFP-like chromophores. In particular, we demonstrated that the emission maximum in our artificial scaffolds is similar to those observed in the spectra of the natural GFP-based systems. To correlate the fluorescence response with a structure and perform a comprehensive analysis of the prepared photoluminescent scaffolds, C-13 cross-polarization magic angle spinning solid-state (CP-MAS) NMR spectroscopy, powder and single-crystal X-ray diffraction, and time-resolved fluorescence spectroscopy were employed. Quadrupolar spinecho solid-state H-2 NMR spectroscopy, in combination with theoretical calculations, was implemented to probe low-frequency vibrational dynamics of the confined chromophores, demonstrating conformational restrictions imposed on the coordinatively trapped chromophores. Because of possible tunability of the introduced scaffolds, these studies could foreshadow utilization of the presented approach toward directing a fluorescence response in artificial GFP mimics, modulating a protein microenvironment, and controlling nonradiative pathways through chromophore dynamics.