화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.137, No.2, 948-957, 2015
Plasmon-Enhanced Formic Acid Dehydrogenation Using Anisotropic Pd-Au Nanorods Studied at the Single-Particle Level
Plasmonic bimetal nanostructures can be used to drive the conventional catalytic reactions efficiently at low temperature with the utilization of solar energy. This work developed Pd-modified Au nanorods, which work as the light absorber and the catalytically active site simultaneously, and exhibit efficient plasmon-enhanced catalytic formic acid dehydrogenation even when below room temperature (5 degrees C). Plasmon-induced interface interaction and photoreaction dynamics of individual nanorods were investigated by single-particle photoluminescence measurement, and a complete quenching phenomenon at the LSPR region was observed for the first time. More importantly, the spatial distribution of the SPR-induced enhancement, analyzed by the finite difference time domain (FDTD) simulation, shows that only tip-coated Pd can be affected for the occurrence of plasmon resonance energy transfer. This finding provides a route to decrease the amount of Pd species by the selective deposition only at the field-enhanced sites.