화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.136, No.52, 17942-17945, 2014
Bioorthogonal Tetrazine-Mediated Transfer Reactions Facilitate Reaction Turnover in Nucleic Acid-Tern plated Detection of MicroRNA
Tetrazine ligations have proven to be a powerful bioorthogonal technique for the detection of many labeled biomolecules, but the ligating nature of these reactions can limit reaction turnover in templated chemistry. We have developed a transfer reaction between 7-azabenzonorbornadiene derivatives and fluorogenic tetrazines that facilitates turnover amplification of the fluorogenic response in nucleic acid-templated reactions. Fluorogenic tetrazine-mediated transfer (TMT) reaction probes can be used to detect DNA and microRNA (miRNA) templates to 0.5 and 5 pM concentrations, respectively. The endogenous oncogenic miRNA target mir-21 could be detected in crude cell lysates and detected by imaging in live cells. Remarkably, the technique is also able to differentiate between miRNA templates bearing a single mismatch with high signal to background. We imagine that TMT reactions could find wide application for amplified fluorescent detection of clinically relevant nucleic acid templates.