화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.136, No.44, 15497-15500, 2014
A Discrete Amphiphilic Organoplatinum(II) Metallacycle with Tunable Lower Critical Solution Temperature Behavior
Oligo(ethylene glycol) (OEG)-decorated supramolecular assemblies are distinguished by their neutral character and macroscopic temperature-sensitive phase transition behavior. OEG functionalization is an emerging strategy to obtain thermoresponsive macrocyclic amphiphiles, although known methods organize the hydrophilic and hydrophobic segments by covalent bonding. Coordination-driven self-assembly offers an alternative route for organizing OEG-functionalized precursors into nanoscopic architectures, resulting in well-defined metallacycle cores surrounded by hydrophilic scaffolds to impart overall amphiphilic character. Here a tri(ethylene glycol)-functionalized thermosensitive amphiphilic metallacycle was prepared with high efficiency by means of the directional-bonding approach. The ensembles thus formed showed good lower critical solution temperature behavior with a highly sensitive phase separation and excellent reversibility. Moreover, the clouding point decreased with increasing metallacycle concentration and addition of K+.