화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.118, No.36, 10588-10594, 2014
Importance of Excitation and Trapping Conditions in Photosynthetic Environment-Assisted Energy Transport
It has been argued that excitonic energy transport in photosynthetic complexes is efficient because of a balance between coherent evolution and decoherence, a phenomenon called environment-assisted quantum transport (ENAQT). Studies of ENAQT have usually assumed that the excitation is initially localized on a particular chromophore, and that it is transferred to a reaction center through a similarly localized trap. However, these assumptions are not physically accurate. We show that more realistic models of excitation and trapping can lead to very different predictions about the importance of ENAQT. In particular, although ENAQT is a robust effect if one assumes a localized trap, its effect can be negligible if the trapping is more accurately modeled as Forster transfer to a reaction center. Our results call into question the suggested role of ENAQT in the photosynthetic process of green sulfur bacteria and highlight the subtleties associated with drawing lessons for designing biomimetic light-harvesting complexes.