화학공학소재연구정보센터
Journal of Physical Chemistry A, Vol.119, No.7, 1108-1116, 2015
Binding Strength of Porphyrin-Gold Nanoparticle Hybrids Based on Number and Type of Linker Moieties and a Simple Method To Calculate Inner Filter Effects of Gold Nanoparticles Using Fluorescence Spectroscopy
Gold nanoparticle-porphyrin assemblies were formed by binding functionalized porphyrins to gold nanoparticles (Au-NPs). Spectroscopic properties of hybrids and binding strength of porphyrins to Au-NPs were observed based on number and type of linker moieties using fluorescence spectroscopy. Binding appears to be dependent on number rather than type of linker moieties present on the porphyrin molecules, as tetraaminophenyl porphyrin shows the highest binding among the molecules we studied and causes agglomeration of nanoparticles due to presence of four linker groups. The inner filter effects of Au-NPs are considerably high due to their high extinction coefficient and cause large errors in the evaluation of quenching efficiencies. We have described a very simple method to calculate the inner filter effects of Au-NPs by first loading them with porphyrins and then replacing them with nonfluorescent ligands. The difference in the fluorescence of unbound porphyrins in the presence and absence of Au-NPs describes their inner filter effects.