Journal of Physical Chemistry A, Vol.118, No.45, 10326-10332, 2014
Rigid Medium Effects on Photophysical Properties of MLCT Excited States of Polypyridyl Os(II) Complexes in Polymerized Poly(ethylene glycol)dimethacrylate Monoliths
Higher-energy emissions from the metal-to-ligand charge-transfer (MLCT) excited states of a series of polypyridyl Os(II) complexes were observed at the fluid-to-film transition in PEG-DMA550. The higher-energy excited states, caused by a "rigid medium effect" in the film, led to enhanced emission quantum yields and longer excited-state lifetimes. Detailed analyses of spectra and excited-state dynamics by Franck-Condon emission spectral analysis and application of the energy gap law for nonradiative excited-state decay reveal that the rigid medium effect arises from the inability of part of the local medium dielectric environment to respond to the change in charge distribution in the excited state during its lifetime. Enhanced excited-state lifetimes are consistent with qualitative and quantitative predictions of the energy gap law.