Journal of Physical Chemistry A, Vol.118, No.37, 8287-8292, 2014
Interactions of Cytochrome c with N-Acylated Phosphatidylethanolamine Lipids
N-Acylphosphatidylethanolamines (NAPEs) are naturally occurring derivatives of phosphatidylethanolmine (PE) in which the PE amino group is attached to an acyl chain. Given their occurrence in natural systems, there is interest in knowing the effect of NAPEs on membrane dynamic structure and function. This study examines the ability of NAPEs to affect the association of the cytochrome c and Zn-heme cytochrome c with the surface of bilayer membranes. Fluorescence titration experiments show that cationic cytochrome c has the same high affinity for the surfaces of anionic vesicles that are rich in NAPEs or diplalmitoyphosphatidylglycerol (DPPG) but the protein/membrane interaction in each case is quite different. Cytochrome c adsorption to DPPG membranes is relatively irreversible due to the DPPG molecules adopting an extended conformation that promotes strong hydrophobic contact with the adsorbed protein. In contrast, cytochrome c association with N-acyl DPPE membranes is due primarily to reversible electrostatic interactions with the anionic headgroup, and not hydrophobic contact with the N-acyl chain. The presence of a small mole fraction of an N-propionyl derivative of DPPE (N-C3:0-DPPE) diminishes cytochrome c affinity for vesicles containing a large amount of DPPG apparently by relieving the membrane packing strain that drives the extended DPPG conformation.