Journal of Materials Science, Vol.49, No.24, 8272-8293, 2014
The effect of plain-weaving on the mechanical properties of warp and weft p-phenylene terephthalamide (PPTA) fibers/yarns
Coarse-grained molecular statics/dynamics methods are first used to investigate degradation in the PPTA fiber/yarn tensile strength, as a result of the prior compressive or tensile loading. PPTA fibers/yarns experience this type of loading in the course of a plain-weaving process, the process which is used in the fabrication of ballistic fabric and flexible armor. The more common all-atom molecular simulations were not used to assess strength degradation for two reasons: (a) the size of the associated computational domain rendering reasonable run-times would be too small and (b) modeling of the mechanical response of multi-fibril PPTA fibers could not be carried out (again due to the limited size of the computational domain). However, all-atom simulations were used to (a) define the coarse-grained particles (referred to as "beads") and (b) parameterize various components of the bead/bead force-field functions. In the second portion of the work, a simplified finite-element analysis of the plain-weaving process is carried out in order to assess the extent of tensile-strength degradation in warp and weft yarns during the weaving process. In this analysis, a new material model is used for the PPTA fibers/yarns. Specifically, PPTA is considered to be a linearly elastic, transversely isotropic material with degradable longitudinal-tensile strength and the longitudinal Young's modulus. Equations governing damage and strength/stiffness degradation in this material model are derived and parameterized using the coarse-grained simulation results. Lastly, the finite-element results are compared with their experimental counterparts, yielding a decent agreement.