Journal of Hazardous Materials, Vol.283, 507-511, 2015
Investigation on minimum ignition energy of mixtures of alpha-pinene-benzene/air
Minimum ignition energies (MIE) of alpha-pinene-benzene/air mixtures at a given temperature for different equivalence ratios and fuel proportions are experimented in this paper. We used a cylindrical chamber of combustion using a nanosecond pulse at 1064 nm from a Q-switched Nd:YAG laser. Laser-induced spark ignitions were studied for two molar proportions of alpha-pinene/benzene mixtures, respectively 20-80% and 50-50%. The effect of the equivalence ratio (Phi) has been investigated for 0.7, 0.9, 1.1 and 1.5 and ignition of fuel/air mixtures has been experimented for two different incident laser energies: 25 and 33 mJ. This study aims at observing the influence of different alpha-pinene/benzene proportions on the flammability of the mixture to have further knowledge of the potential of biogenic volatile organic compounds (BVOCs) and smoke mixtures to influence forest fires, especially in the case of the accelerating forest fire phenomenon (AFF). Results of ignition probability and energy absorption are based on 400 laser shots for each studied fuel proportions. MIE results as functions of equivalence ratio compared to data of pure alpha-pinene and pure benzene demonstrate that the presence of benzene in alpha-pinene-air mixture tends to increase ignition probability and reduce MIE without depending strongly on the alpha-pinene/benzene proportion. (C) 2014 Elsevier B.V. All rights reserved.