화학공학소재연구정보센터
Journal of Hazardous Materials, Vol.279, 392-401, 2014
Preparation and high catalytic performance of Au/3DOM Mn2O3 for the oxidation of carbon monoxide and toluene
Three-dimensionally ordered macroporous (3DOM) Mn2O3 and its supported gold (xAu/3DOM Mn2O3, x = 1.9-7.5 wt%) nanocatalysts were prepared using the polymethyl methacrylate-templating and polyvinyl alcohol-protected reduction methods, respectively. The 3DOM Mn2O3 and xAu/3DOM Mn2O3 samples exhibited a surface area of 34-38 m(2)/g. The Au nanoparticles (NPs) with a size of 3.0-3.5 nm were uniformly dispersed on the skeletons of 3 DOM Mn2O3. The 5.8Au/3DOM Mn2O3 sample performed the best, giving the T-90% (the temperature required for a conversion of 90%) of -15 degrees C at space velocity (SV) = 20,000 mL/(g h) for CO oxidation and 244 degrees C at SV = 40,000 mL/(g h) for toluene oxidation. The apparent activation energies (30 and 54 kJ/mol) over 5.8Au/3DOM Mn2O3 were much lower than those (80 and 95 kJ/mol) over 3 DOM Mn2O3 for CO and toluene oxidation, respectively. The effects of SV, water vapor, CO2, and SO2 on catalytic activity were also examined. It is concluded that the excellent catalytic performance of 5.8Au/3DOM Mn2O3 was associated with its high oxygen adspecies concentration, good low-temperature reducibility, and strong interaction between Au NPs and 3DOM Mn2O3 as well as high-quality porous architecture. (C) 2014 Elsevier B.V. All rights reserved.