화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.444, 1-9, 2015
Tailored synthesis of amine N-halamine copolymerized polystyrene with capability of killing bacteria
Novel amine N-halamine copolymerized polystyrene (ANHCPS) nanostructures were controllably fabricated as potent antibiotics by using the surfactant-free emulsion copolymerization for killing pathogenic bacteria. The morphology and size of the ANHCPS were well tailored by tuning reaction conditions such as monomer molar ratio, temperature, and copolymerization time. Effect of chlorination aging time on the oxidative chlorine content in the ANHCPS was established, and the oxidative chlorine content was determined by the modified iodometric/thiosulfate technique. Antibacterial behavior of the ANHCPS on bacterial strain was evaluated using Staphylococcus aureus and Escherichia coli as model pathogenic bacteria via the plate counting technique, inhibition zone study, and time-kill assay. Antimicrobial results illustrated that the ANHCPS possessed superior antibacterial capability of killing pathogenic bacteria. The destruction induced by the ANHCPS on bacterial surface structure was proven by using SEM technique. The effect of the oxidative chlorine content and morphology/size on the antimicrobial capability was constructed as well. This study provides us a novel approach for controllably synthesizing amine N-halamine polymers, and making them the potent candidates for killing bacteria or even the control of microorganism contamination. (C) 2014 Elsevier Inc. All rights reserved.