Journal of Colloid and Interface Science, Vol.437, 211-218, 2015
A novel benzimidazole-functionalized 2-D COF material: Synthesis and application as a selective solid-phase extractant for separation of uranium
A novel COF-based material (COF-COOH) containing large amounts of carboxylic groups was prepared for the first time by using a simple and effective one-step synthetic method, in which the cheap and commercially available raw materials, trimesoyl chloride and p-phenylenediamine, were used. The as-synthesized COF-COOH was modified with previously synthesized 2-(2,4-dihydroxyphenyl)-benzimidazole (HBO by "grafting to" method, and a new solid-phase extractant (COF-HBI) with highly efficient sorption performance for uranium(VI) was consequently obtained. A series of characterizations demonstrated that COF-COOH and COF-HBI exhibited great thermostabilities and irradiation stabilities. Sorption behavior of the COF-based materials toward U(VI) was compared in simulated nuclear industrial effluent containing UO22+ and 11 undesired ions, and the UO22+ sorption amount of COF-HBI was 81 mg g(-1), accounting for approximately 58% of the total sorption amount, which was much higher than the sorption selectivity of COF-COOH to UO22+ (39%). Batch sorption experiment results indicated that the uranium(VI) sorption on COF-HBI was a pH dependent, rapid (sorption equilibrium was reached in 30 min), endothermic and spontaneous process. In the most favorable conditions, the equilibrium sorption capacity of the adsorbent for uranium could reach 211 mg g(-1). (c) 2014 Elsevier Inc. All rights reserved.
Keywords:Covalent organic frameworks (COFs);Modified;Solid-phase extractant;Uranium;Selective sorption