Journal of Colloid and Interface Science, Vol.436, 63-69, 2014
Carbon-coated Zinc Sulfide nano-clusters: Synthesis, photothermal conversion and adsorption properties
Carbon-coated cluster-like ZnS nanospheres were synthesized by a facile solvothermal route. ZnCl2, thiourea, and glucose were selected as the raw materials. The formed ZnS with hexagonal phase has spherical cluster-like structure, which shows good monodispersity in size. A thin layer carbon is coated on the surface of ZnS cluster-like spheres. The thickness of carbon shell is dependent on the dosage of glucose. The carbon-coated ZnS nano-clusters show the same emission as that of pristine ZnS nano-clusters. Exposure of the aqueous dispersion of carbon-coated ZnS products to 980 nm laser can elevate its temperature by 5.1 degrees C in 8 min. It was found that the photothermal conversion effect mainly comes from the carbon component and at the same time, the heterointerface between ZnS and carbon also provides a positive role for it. In addition, the carbon-coated ZnS products can absorb dye molecular with highest adsorption capacity of 36.8 mg/g toward Rhodamine B. The present finding demonstrates their potential applications in photothermal agents, adsorbents, and related fields. (C) 2014 Elsevier Inc. All rights reserved.