화학공학소재연구정보센터
International Journal of Hydrogen Energy, Vol.39, No.36, 21154-21164, 2014
Diagnosis of hydrogen crossover and emission in proton exchange membrane fuel cells
When hydrogen leaks through holes in membrane-electrode assemblies (MEAs) in proton exchange membrane (PEM) fuel cells, it recombines directly with air. This recombination results in a reduction in oxygen concentration on the cathode side of the MEA. In this paper, the signatures of electrochemical impedance spectroscopy (EIS) are analyzed in different multi-cell stack configurations to show the relation between hydrogen leak rate and reduced oxygen concentrations. The reduction in concentration was made by mixing oxygen with nitrogen at different rates, and the increase in hydrogen leak rate was made by controlling the differential pressure (dP) between anode and cathode. To analyze the impedance signatures, we fit the data of oxygen concentration and dP with the parameters of a Randles circuit. The correlation between the parameters of the two data sets allows us to understand the change in impedance signatures with respect to reduction of oxygen in the cathode side. To have a better insight on the effect of insufficient oxygen at the cathode, a model that establishes a relationship between impedance and voltage was considered. Using this model along with the impedance signatures we were able to detect the reduction of oxygen concentrations at the cathode with the help of fuzzy rule-base. However, resolution of detection was reduced with the reduction of leak rate and/or increases in the stack cell count. Copyright (c) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.