International Journal of Hydrogen Energy, Vol.39, No.30, 17054-17074, 2014
Bed geometries, fueling strategies and optimization of heat exchanger designs in metal hydride storage systems for automotive applications: A review
This review presents recent developments for effective heat management systems to be integrated in metal hydride storage tanks, and investigates the performance improvements and limitations of each particular solution. High pressures and high temperatures metal hydrides can lead to different design considerations, which are discussed in the paper. Studies analyzing design procedures based upon different geometrical solutions and/or operation strategies are considered, and their related advantages are explained. Restrictions to the validity of particular results are also evaluated. Major attention is here given to metal hydride storage tanks for light duty vehicles, since this application is the most promising one for such storage materials and has been widely studied in the literature. Enhancing cooling/heating during hydrogen uptake and discharge has found to be essential to improve storage systems capacities and minimize time requirements. Various fueling strategies are widely explained differing by the particular system approach taken into account. At the end, optimization criteria and outcomes for both geometry-oriented and operative strategies-oriented methods are analyzed and presented to the reader as a helpful tool for future design considerations. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.