화학공학소재연구정보센터
Inorganic Chemistry, Vol.53, No.18, 9837-9848, 2014
Structural and Spectroscopic Characterization of Iron(11), Cobalt(II), and Nickel(11) ortho-Dihalophenolate Complexes: Insights into Metal-Halogen Secondary Bonding
Metal complexes incorporating the tris(3,5-diphenylpyrazolyl)borate ligand (TpPh2) and ortho-dihalophenolates were synthesized and characterized in order to explore metalhalogen secondary bonding in biorelevant model complexes. The complexes Tp(Ph2)ML were synthesized and structurally characterized, where M was Fe(II), Co(II), or Ni(II) and L was either 2,6-dichloro- or 2,6-dibromophenolate. All six complexes exhibited metalhalogen secondary bonds in the solid state, with distances ranging from 2.56 angstrom for the Tp(Ph2)Ni(2,6-dichlorophenolate) complex to 2.88 angstrom for the Tp(Ph2)Fe(2,6-dibromophenolate) complex. Variable temperature NMR spectra of the Tp(Ph2)Co(2,6-dichlorophenolate) and Tp(Ph2)Ni(2,6-dichlorophenolate) complexes showed that rotation of the phenolate, which requires loss of the secondary bond, has an activation barrier of similar to 30 and similar to 37 kJ/mol, respectively. Density functional theory calculations support the presence of a barrier for disruption of the metal-halogen interaction during rotation of the phenolate. On the other hand, calculations using the spectroscopically calibrated angular overlap method suggest essentially no contribution of the halogen to the ligand-field splitting. Overall, these results provide the first quantitative measure of the strength of a metalhalogen secondary bond and demonstrate that it is a weak noncovalent interaction comparable in strength to a hydrogen bond. These results provide insight into the origin of the specificity of the enzyme 2,6-dichlorohydroquinone 1,2-dioxygenase (PcpA), which is specific for ortho-dihalohydroquinone substrates and phenol inhibitors.