IEEE Transactions on Automatic Control, Vol.59, No.12, 3194-3208, 2014
Efficient Computations of a Security Index for False Data Attacks in Power Networks
The resilience of Supervisory Control and Data Acquisition (SCADA) systems for electric power networks for certain cyber-attacks is considered. We analyze the vulnerability of the measurement system to false data attack on communicated measurements. The vulnerability analysis problem is shown to be NP-hard, meaning that unless P = NP there is no polynomial time algorithm to analyze the vulnerability of the system. Nevertheless, we identify situations, such as the full measurement case, where the analysis problem can be solved efficiently. In such cases, we show indeed that the problem can be cast as a generalization of the minimum cut problem involving nodes with possibly nonzero costs. We further show that it can be reformulated as a standard minimum cut problem (without node costs) on a modified graph of proportional size. An important consequence of this result is that our approach provides the first exact efficient algorithm for the vulnerability analysis problem under the full measurement assumption. Furthermore, our approach also provides an efficient heuristic algorithm for the general NP-hard problem. Our results are illustrated by numerical studies on benchmark systems including the IEEE 118-bus system.
Keywords:Mathematical programming;network theory (graph);power system security;SCADA systems;smart grids