화학공학소재연구정보센터
Energy Policy, Vol.78, 125-136, 2015
Reframing the policy approach to greenhouse gas removal technologies
Greenhouse gas removal (GGR) methods such as direct air capture, bioenergy with carbon capture and storage, biochar and enhanced weathering have recently attracted attention as "geoengineering" options to reverse the build-up of greenhouse gases in the atmosphere. Contrary to this framing, however, we argue that GGR technologies can in fact form a valuable complement to emissions control within on-going mitigation efforts. Through decoupling abatement from emissions sources, they add much-needed flexibility to the mitigation toolbox, increasing feasibility and reducing costs of meeting climate targets. Integrating GGR effectively into policy raises significant challenges relating to uncertain costs, side effects, life-cycle effectiveness and accounting. Delaying policy action until these uncertainties are resolved, however, risks missing early opportunities, suffocating innovation and locking out the long-term potential of GGR. Based on an analysis of bioenergy with carbon capture and storage, we develop four policy principles to begin unlocking the potential of GGR: (i) support further research, development and demonstration; (ii) support near-term opportunities through modifying existing policy mechanisms; (iii) commit to full GGR integration in carbon accreditation and broader climate policy frameworks in future; (iv) develop sector-specific steps that lay the groundwork for future opportunities and avoid lock-out (C) 2015 Published by Elsevier Ltd.