Journal of Electroanalytical Chemistry, Vol.430, No.1-2, 235-242, 1997
Finite element simulation of the amperometric response of recessed and protruding microband electrodes in flow channels
The convective mass transfer for recessed and protruding microband electrodes, two geometries found in practical devices, is determined by the finite element method. The problem is solved by a two-step method, first solving the Navier-Stokes equation to compute the real hydrodynamic flow, then solving the convective diffusion equation to calculate the electrochemical response of the systems. In this work, we focus on the chronoamperometric response of recessed and protruding microband electrodes, emphasizing the role of the edge effects and convection streamlines, in particular the role of stagnant recirculating eddies due to these particular geometries.