화학공학소재연구정보센터
Energy Conversion and Management, Vol.87, 107-118, 2014
Thermo-economic optimization of Regenerative Organic Rankine Cycle for waste heat recovery applications
Organic Rankine Cycle (ORC) is low grade and waste heat conversion technology. The current article deal with the thermo-economic optimization of basic ORC and regenerative ORC for waste heat recovery applications under constant heat source condition. Thermal efficiency and specific investment cost of basic ORC, single stage regenerative and double stage regenerative ORC has been optimized by using Non-dominated Sorting Genetic Algorithm-II (NSGA-II). Maximum thermal efficiency and minimum specific investment cost were selected as objective functions and relative increase in thermal efficiency and cost has been analyzed taking the basic ORC as base case. The constraint set consist of evaporation pressure, superheat, pinch point temperature difference in evaporator and condenser. The optimization was performed for five different working fluids. The optimization result show that R245fa is best working under considered conditions and basic ORC has low specific investment cost and thermal efficiency compared to regenerative ORC. R245fa is low boiling organic fluid, which has high degree of thermal stability and compatible with common construction materials of ORC. The average increase in thermal efficiency from basic ORC to single stage regenerative ORC was 1.01% with an additional cost of 187 $/kW while from basic ORC to double stage regenerative ORC was 1.45% with an average increase in cost of 297 $/kW. The sensitivity analysis was also performed to investigate the effect of operating conditions which show that evaporation pressure has promising effect on thermal efficiency and specific investment cost. (C) 2014 Elsevier Ltd. All rights reserved.