Energy and Buildings, Vol.82, 675-684, 2014
Model predictive HVAC control with online occupancy model
This paper presents an occupancy-predicting control algorithm for heating, ventilation, and air conditioning (HVAC) systems in buildings. It incorporates the building's thermal properties, local weather predictions, and a self-tuning stochastic occupancy model to reduce energy consumption while maintaining occupant comfort. Contrasting with existing approaches, the occupancy model requires no manual training and adapts to changes in occupancy patterns during operation. A prediction-weighted cost function provides conditioning of thermal zones before occupancy begins and reduces system output before occupancy ends. Simulation results with real-world occupancy data demonstrate the algorithm's effectiveness. (C) 2014 Elsevier B.V. All rights reserved.