Chinese Journal of Chemical Engineering, Vol.22, No.7, 812-819, 2014
Study and Application of Fault Prediction Methods with Improved Reservoir Neural Networks
Time-series prediction is one of the major methodologies used for fault prediction. The methods based on recurrent neural networks have been widely used in time-series prediction for their remarkable non-liner mapping ability. As a new recurrent neural network, reservoir neural network can effectively process the time-series prediction. However, the ill-posedness problem of reservoir neural networks has seriously restricted the generalization performance. In this paper, a fault prediction algorithm based on time-series is proposed using improved reservoir neural networks. The basic idea is taking structure risk into consideration, that is, the cost function involves not only the experience risk factor but also the structure risk factor. Thus a regulation coefficient is introduced to calculate the output weight of the reservoir neural network. As a result, the amplitude of output weight is effectively controlled and the ill-posedness problem is solved. Because the training speed of ordinary reservoir networks is naturally fast, the improved reservoir networks for time-series prediction are good in speed and generalization ability. Experiments on Mackey-Glass and sunspot time series prediction prove the effectiveness of the algorithm. The proposed algorithm is applied to TE process fault prediction. We first forecast some time-series obtained from TE and then predict the fault type adopting the static reservoirs with the predicted data. The final prediction correct rate reaches 81%. (C) 2014 Chemical Industry and Engineering Society of China, and Chemical Industry Press. All rights reserved.